73 research outputs found

    Remote access to crystallography beamlines at SSRL: novel tools for training, education and collaboration

    Get PDF
    The ultimate goal of synchrotron data collection is to obtain the best possible data from the best available crystals, and the combination of automation and remote access at Stanford Synchrotron Radiation Lightsource (SSRL) has revolutionized the way in which scientists achieve this goal. This has also seen a change in the way novice crystallographers are trained in the use of the beamlines, and a wide range of remote tools and hands-on workshops are now offered by SSRL to facilitate the education of the next generation of protein crystallographers

    Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope

    Get PDF
    Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332_(gp120) glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332_(gp120) glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18’s binding orientation provides additional contacts with N392_(gp120) and N386_(gp120) glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb–glycan interactions critical for using V3/N332_(gp120) bNAbs therapeutically and targeting their epitope for immunogen design

    Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope

    Get PDF
    Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332_(gp120) glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332_(gp120) glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18’s binding orientation provides additional contacts with N392_(gp120) and N386_(gp120) glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb–glycan interactions critical for using V3/N332_(gp120) bNAbs therapeutically and targeting their epitope for immunogen design

    New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection

    Get PDF
    Through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface, SSRL researchers have screened over 200 000 biological crystals for diffraction quality in an automated fashion. Three quarters of SSRL researchers are using these data-collection tools from remote locations

    Changes in an Enzyme Ensemble During Catalysis Observed by High Resolution XFEL Crystallography

    Get PDF
    Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and timeresolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics

    One hundred years of EEG for brain and behaviour research

    Get PDF
    On the centenary of the first human EEG recording, more than 500 experts reflect on the impact that this discovery has had on our understanding of the brain and behaviour. We document their priorities and call for collective action focusing on validity, democratization and responsibility to realize the potential of EEG in science and society over the next 100 years
    corecore