127 research outputs found

    A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell

    Full text link
    A fluorescence correlation spectroscopy (FCS) system based on two independent measurement volumes is presented. The optical setup and data acquisition hardware are detailed, as well as a complete protocol to control the location, size and shape of the measurement volumes. A method that allows to monitor independently the excitation and collection efficiency distribution is proposed. Finally, a few examples of measurements that exploit the two spots in static and/or scanning schemes, are reported.Comment: Accepted for publication in Review of Scientific Instrumen

    Projet d'équipement et friche urbaine, un exemple : la rocade L.2 à Marseille

    Get PDF
    International audienc

    Potent Tau aggregation inhibitor D-Peptides selected against Tau-repeat 2 using mirror image phage display

    Get PDF
    Alzheimer's disease and other Tauopathies are associated with neurofibrillary tangles composed of Tau protein, as well as toxic Tau oligomers. Therefore, inhibitors of pathological Tau aggregation are potentially useful candidates for future therapies targeting Tauopathies. Two hexapeptides within Tau, designated PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-311), are known to promote Tau aggregation. Recently, the PHF6* segment has been described as the more potent driver of Tau aggregation. We therefore employed mirror-image phage display with a large peptide library to identify PHF6* fibril binding peptides consisting of D-enantiomeric amino acids. The suitability of D-enantiomeric peptides for in vivo applications, which are protease stable and less immunogenic than L-peptides, has already been demonstrated. The identified D-enantiomeric peptide MMD3 and its retro-inverso form, designated MMD3rev, inhibited in vitro fibrillization of the PHF6* peptide, the repeat domain of Tau as well as full-length Tau. Dynamic light scattering, pelleting assays and atomic force microscopy demonstrated that MMD3 prevents the formation of tau β-sheet-rich fibrils by diverting Tau into large amorphous aggregates. NMR data suggest that the D-enantiomeric peptides bound to Tau monomers with rather low affinity, but ELISA (enzyme-linked immunosorbent assay) data demonstrated binding to PHF6* and full length Tau fibrils. In addition, molecular insight into the binding mode of MMD3 to PHF6* fibrils were gained by in silico modelling. The identified PHF6*-targeting peptides were able to penetrate cells. The study establishes PHF6* fibril binding peptides consisting of D-enantiomeric amino acids as potential molecules for therapeutic and diagnostic applications in AD research

    A novel D-amino acid peptide with therapeutic potential (ISAD1) inhibits aggregation of neurotoxic disease-relevant mutant Tau and prevents Tau toxicity in vitro

    Get PDF
    Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that mainly affects older adults. One of the pathological hallmarks of AD is abnormally aggregated Tau protein that forms fibrillar deposits in the brain. In AD, Tau pathology correlates strongly with clinical symptoms, cognitive dysfunction, and neuronal death. Methods We aimed to develop novel therapeutic D-amino acid peptides as Tau fibrillization inhibitors. It has been previously demonstrated that D-amino acid peptides are protease stable and less immunogenic than L-peptides, and these characteristics may render them suitable for in vivo applications. Using a phage display procedure against wild type full-length Tau (Tau(FL)), we selected a novel Tau binding L-peptide and synthesized its D-amino acid version ISAD1 and its retro inversed form, ISAD1rev, respectively. Results While ISAD1rev inhibited Tau aggregation only moderately, ISAD1 bound to Tau in the aggregation-prone PHF6 region and inhibited fibrillization of Tau(FL), disease-associated mutant full-length Tau (Tau(FL Delta K), Tau(FL-A152T), Tau(FL-P301L)), and pro-aggregant repeat domain Tau mutant (Tau(RD Delta K)). ISAD1 and ISAD1rev induced the formation of large high molecular weight Tau(FL) and Tau(RD Delta K) oligomers that lack proper Thioflavin-positive beta-sheet conformation even at lower concentrations. In silico modeling of ISAD1 Tau interaction at the PHF6 site revealed a binding mode similar to those known for other PHF6 binding peptides. Cell culture experiments demonstrated that ISAD1 and its inverse form are taken up by N2a-Tau(RD Delta K) cells efficiently and prevent cytotoxicity of externally added Tau fibrils as well as of internally expressed Tau(RD Delta K). Conclusions ISAD1 and related peptides may be suitable for therapy development of AD by promoting off-pathway assembly of Tau, thus preventing its toxicity

    Evidence for new C-terminally truncated variants of α- and β-tubulins

    Get PDF
    New C-terminally truncated α- and β-tubulin variants, both ending with an -EEEG sequence, are identified in vivo: αΔ3-tubulin, which has a specific neuronal distribution pattern (distinct from that of αΔ2-tubulin) and seems to be related to dynamic microtubules, and βΔ4-tubulin, corresponding to β2A/B-tubulin modified by truncation of four C-terminal residues, which is ubiquitously present in cells and tissues. Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the -EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same -EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with -EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development

    Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19

    Get PDF
    The systemic immune response to viral infection is shaped by master transcription fac-tors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs)have been suggested as important regulators of transcription factor activity, their contri-butions to the systemic immunopathologies observed during SARS-CoV-2 infectionhave remained unknown. Here, we employed a targeted single-cell RNA sequencingapproach to reveal lncRNAs differentially expressed in blood leukocytes during severeCOVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alar-min transcription) as a major PU.1 feedback-regulator in monocytes, governing the pro-duction of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockoutand transgene expression, combined with chromatin-occupancy profiling, characterizedPIRATasanucleardecoyRNA,keepingPU.1frombindingtoalarminpromotersandpromoting its binding to pseudogenes in naïve monocytes. NF-κB–dependent PIRATdown-regulation during COVID-19 consequently releases a transcriptional brake, fuelingalarmin production. Alarmin expression is additionally enhanced by the up-regulation ofthe lncRNA LUCAT1, which promotes NF-κB–dependentgeneexpressionattheexpenseof targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncod-ing RNA networks in systemic antiviral responses to SARS-CoV-2 in humans

    MARK4 controls ischaemic heart failure through microtubule detyrosination.

    Get PDF
    Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.BHF fellowship grant (FS/14/28/30713), Issac Newton Trust Grant (18.40u), and Cambridge BHF Centre of Research Excellence grants (RE/13/6/30180 and RE/18/1/34212)

    CD4+ T cell surface alpha enolase is lower in older adults

    Get PDF
    To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease
    corecore