3,050 research outputs found

    Termite mounds as bio-indicators of groundwater: Prospects and constraints

    Get PDF
    © 2018 Universiti Putra Malaysia Press. Reliance on modern sophisticated equipment for making ‘discoveries’ has limited the human power of observing subtle clues in the environment that are capable of saving cost and labour that come with researching new resources and methods to improve life for all. Due to the growing scarcity of potable water, especially in African and Asian countries, newer, cheaper and reliable methods of investigating groundwater resources are becoming critical. One such potentially promising method is mapping the distribution of termite mounds in the environment. Termite mounds are conspicuous landscape features in tropical and sub-tropical regions of the world. Built from surrounding soils by several species of termite, the properties of mound soil are relatively different from the surrounding soil in most cases, indicating improved hydraulic properties. In this paper, the aim is to review the possibility of employing termite mounds as prospecting tools for groundwater search from three spatial scales of observation. From assessing the smallest to the highest scale of observation, it can be concluded that termite mounds’ prospect as surface indicators of groundwater is apparent. Review findings indicate increased surface water infiltration, presence of riparian tree vegetation and other trees with tap-root system around termite mounds, linear assemblage of termite mounds along aquiferous dykes and seep-lines as well as the dependence of termites on water but avoidance of places with risk of inundation. Whether they indicate permanent groundwater reserves in all cases or whether all species depend largely on water for their metabolism is a subject for further research

    Spatial assessment of termites interaction with groundwater potential conditioning parameters in Keffi, Nigeria

    Full text link
    © 2019 Elsevier B.V. Termite mounds are traditionally presumed to be good indicators of groundwater in places they inhabit but this hypothesis is yet to be scientifically substantiated. To confirm this assertion, it is expected that termite mounds would have strong correlations with groundwater conditioning parameters (GCPs). In this study, termite mounds distribution covering an area of about 156 km2 were mapped and their structural characteristics documented with the aim of examining their relationships with twelve (12) chosen GCPs. Other specific objectives were to identify specific mound types with affinity to groundwater and to produce a groundwater potential map of the study area. To achieve this, 12 GCPs including geology, drainage density, lineament density, lineament intersection density, land use/land cover, topographic wetness index (TWI), normalized difference vegetation index (NDVI), slope, elevation, plan curvature, static water level and groundwater level fluctuation were extracted from relevant sources. Frequency ratio (FR) and Spearman's rank correlation were used to find relationships and direction of such relationships. The result revealed a consistent agreement between FR and Spearman's rank correlation that tall (≥1.8 m) and Cathedral designed mounds are good indicators of groundwater. Further, the groundwater potential map produced from the Random Forest (RF) model via Correlation-based Feature Selection (CFS) using best-first algorithm depicted an erratic nature of groundwater distribution in the study area. This was then classified using natural break into very-high, high, moderate, low and very low potential classes and area under curve (AUC) of the receiver operating characteristics (ROC) showed an 86.5% validity of the model. About 75% of mapped termite mounds fell within the very-high to moderate potential classes thereby suggesting that although tall and cathedral mounds in particular showed good correlations with a number of GCPs, high mound density in a locality is also an indication of good groundwater potential

    Do Termitaria Indicate the Presence of Groundwater? A Case Study of Hydrogeophysical Investigation on a Land Parcel with Termite Activity.

    Full text link
    Termite nests have long been suggested to be good indicators of groundwater but only a few studies are available to demonstrate the relationship between the two. This study therefore aims at investigating the most favourable spots for locating groundwater structures on a small parcel of land with conspicuous termite activity. To achieve this, geophysical soundings using the renowned vertical electrical sounding (VES) technique was carried out on the gridded study area. A total of nine VESs with one at the foot of a termitarium were conducted. The VES results were interpreted and assessed via two different techniques: (1) physical evaluation as performed by drillers in the field and (2) integration of primary and secondary geoelectrical parameters in a geographic information system (GIS). The result of the physical evaluation indicated a clear case of subjectivity in the interpretation but was consistent with the choice of VES points 1 and 6 (termitarium location) as being the most prospective points to be considered for drilling. Similarly, the integration of the geoelectrical parameters led to the mapping of the most prospective groundwater portion of the study area with the termitarium chiefly in the center of the most suitable region. This shows that termitaria are valuable landscape features that can be employed as biomarkers in the search of groundwater

    Aquifer potential assessment in termites manifested locales using geo-electrical and surface hydraulic measurement parameters

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. In some parts of tropical Africa, termite mound locations are traditionally used to site groundwater structures mainly in the form of hand-dug wells with high success rates. However, the scientific rationale behind the use of mounds as prospective sites for locating groundwater structures has not been thoroughly investigated. In this paper, locations and structural features of termite mounds were mapped with the aim of determining the aquifer potential beneath termite mounds and comparing the same with adjacent areas, 10 m away. Soil and species sampling, field surveys and laboratory analyses to obtain data on physical, hydraulic and geo-electrical parameters from termite mounds and adjacent control areas followed. The physical and hydraulic measurements demonstrated relatively higher infiltration rates and lower soil water content on mound soils compared with the surrounding areas. To assess the aquifer potential, vertical electrical soundings were conducted on 28 termite mounds sites and adjacent control areas. Three (3) important parameters were assessed to compute potential weights for each Vertical Electrical Sounding (VES) point: Depth to bedrock, aquifer layer resistivity and fresh/fractured bedrock resistivity. These weights were then compared between those of termite mound sites and those from control areas. The result revealed that about 43% of mound sites have greater aquifer potential compared to the surrounding areas, whereas 28.5% of mounds have equal and lower potentials compared with the surrounding areas. The study concludes that termite mounds locations are suitable spots for groundwater prospecting owing to the deeper regolith layer beneath them which suggests that termites either have the ability to locate places with a deeper weathering horizon or are themselves agents of biological weathering. Further studies to check how representative our study area is of other areas with similar termite activities are recommended

    Vegetation and the importance of insecticide-treated target siting for control of Glossina fuscipes fuscipes

    Get PDF
    Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets

    Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

    Get PDF
    In the past decade, significant research efforts have been devoted to mineral chemistrystudies to assist porphyry exploration. These activities can be divided into two majorfields of research: (1) porphyry indicator minerals (PIMs), which are used to identify thepresence of, or potential for, porphyry-style mineralization based on the chemistry ofmagmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermalminerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs),which use the chemical compositions of hydrothermal minerals such as epidote,chlorite and alunite to predict the likely direction and distance to mineralized centers,and the potential metal endowment of a mineral district. This new generation ofexploration tools has been enabled by advances in and increased access to laserablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), short wavelength infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies.PIMs and PVFTs show considerable promise for exploration and are starting to beapplied to the diversity of environments that host porphyry and epithermal depositsglobally. Industry has consistently supported development of these tools, in the case ofPVFTs encouraged by several successful blind tests where deposit centers havesuccessfully been predicted from distal propylitic settings. Industry adoption is steadilyincreasing but is restrained by a lack of the necessary analytical equipment andexpertise in commercial laboratories, and also by the on-going reliance on well-established geochemical exploration techniques (e.g., sediment, soil and rock-chipsampling) that have aided the discovery of near-surface resources over many decades, are now proving less effective in the search for deeply buried mineral resources, and for those concealed under cover

    How do tsetse recognise their hosts? The role of shape in the responses of tsetse (Glossina fuscipes and G. palpalis) to artificial hosts

    Get PDF
    Palpalis-group tsetse, particularly the subspecies of Glossina palpalis and G. fuscipes, are the most important transmitters of human African trypanomiasis (HAT), transmitting .95% of cases. Traps and insecticide-treated targets are used to control tsetse but more cost-effective baits might be developed through a better understanding of the fly’s host-seeking behaviour.Electrocuting grids were used to assess the numbers of G. palpalis palpalis and G. fuscipes quanzensis attracted to and landing on square or oblong targets of black cloth varying in size from 0.01 m2 to 1.0 m2. For both species, increasing the size of a square target from 0.01 m2 (dimensions = 0.1 x 0.1 m) to 1.0 m2 (1.0 x 1.0 m) increased the catch ,4x however the numbers of tsetse killed per unit area of target declined with target size suggesting that the most cost efficient targets are not the largest. For G. f. quanzensis, horizontal oblongs, (1 m wide x 0.5 m high) caught, 1.8x more tsetse than vertical ones (0.5 m wide x 1.0 m high) but the opposite applied for G. p. palpalis. Shape preference was consistent over the range of target sizes. For G. p. palpalis square targets caught as many tsetse as the oblong; while the evidence is less strong the same appears to apply to G. f. quanzensis. The results suggest that targets used to control G. p. palpalis and G. f. quanzensis should be square, and that the most cost-effective designs, as judged by the numbers of tsetse caught per area of target, are likely to be in the region of 0.25 x 0.25 m2. The preference of G. p. palpalis for vertical oblongs is unique amongst tsetse species, and it is suggested that this response might be related to its anthropophagic behaviour and hence importance as a vector of HAT

    A database of microRNA expression patterns in Xenopus laevis

    Get PDF
    MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase

    Network Archaeology: Uncovering Ancient Networks from Present-day Interactions

    Get PDF
    Often questions arise about old or extinct networks. What proteins interacted in a long-extinct ancestor species of yeast? Who were the central players in the Last.fm social network 3 years ago? Our ability to answer such questions has been limited by the unavailability of past versions of networks. To overcome these limitations, we propose several algorithms for reconstructing a network's history of growth given only the network as it exists today and a generative model by which the network is believed to have evolved. Our likelihood-based method finds a probable previous state of the network by reversing the forward growth model. This approach retains node identities so that the history of individual nodes can be tracked. We apply these algorithms to uncover older, non-extant biological and social networks believed to have grown via several models, including duplication-mutation with complementarity, forest fire, and preferential attachment. Through experiments on both synthetic and real-world data, we find that our algorithms can estimate node arrival times, identify anchor nodes from which new nodes copy links, and can reveal significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology
    corecore