120 research outputs found

    A comparison of the DNA binding and bending capacities and the oligomeric states of the immunity repressors of heteroimmune coliphages P2 and WPhi

    Get PDF
    Bacteriophages P2 and WΦ are heteroimmune members of the P2-like family of temperate Escherichia coli phages. Temperate phages can grow lytically or form lysogeny after infection. A transcriptional switch that contains two con-vergent promoters, Pe and Pc, and two repressors regulate what life mode to enter. The immunity repressor C is the first gene of the lysogenic operon, and it blocks the early Pe promoter. In this work, some characteristics of the C proteins of P2 and WΦ are compared. An in vivo genetic analysis shows that WΦ C, like P2 C, has a strong dimerization activity in the absence of its DNA target. Both C proteins recognize two directly repeated sequences, termed half-sites and a strong bending is induced in the respective DNA target upon binding. P2 C is unable to bind to one half-site as opposed to WΦ, but both half-sites are required for repression of WΦ Pe. A reduction from three to two helical turns between the centers of the half-sites in WΦ has no significant effect on the capacity to repress Pe. However, the protein–DNA complexes formed differ, as determined by electrophoretic mobility shift experiments. A difference in spontaneous phage production is observed in isogenic lysogens

    Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model

    Get PDF
    This paper proposes and discusses a soft-linking procedure between a Computable General Equilibrium (CGE) model and an energy system model with the aim to improve national energy policy decision-making. Significant positive and negative experiences are communicated. Specifically, the process of soft-linking the EMEC and TIMES-Sweden models is presented, and unlike previous work we rely on the use of multiple direction-specific connection points. Moreover, the proposed soft-linking methodology is applied in the context of a climate policy scenario for Sweden. The results display a partly new description of the Swedish economy, which when soft-linking, generates lower CO2-emissions in the reference scenario due to a decline in industrial energy demand. These findings point at the importance of linking bottom-up and top-down models when assessing national energy and climate policies

    The role of repressor kinetics in relief of transcriptional interference between convergent promoters

    Get PDF
    Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR-PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI.Nan Hao, Adam C. Palmer, Alexandra Ahlgren-Berg, Keith E. Shearwin, and Ian B. Dod

    Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186

    Get PDF
    The CII protein of temperate coliphage 186, like the unrelated CII protein of phage λ, is a transcriptional activator that primes expression of the CI immunity repressor and is critical for efficient establishment of lysogeny. 186-CII is also highly unstable, and we show that in vivo degradation is mediated by both FtsH and RseP. We investigated the role of CII instability by constructing a 186 phage encoding a protease resistant CII. The stabilised-CII phage was defective in the lysis-lysogeny decision: choosing lysogeny with close to 100% frequency after infection, and forming prophages that were defective in entering lytic development after UV treatment. While lysogenic CI concentration was unaffected by CII stabilisation, lysogenic transcription and CI expression was elevated after UV. A stochastic model of the 186 network after infection indicated that an unstable CII allowed a rapid increase in CI expression without a large overshoot of the lysogenic level, suggesting that instability enables a decisive commitment to lysogeny with a rapid attainment of sensitivity to prophage induction.Iain M Murchland, Alexandra Ahlgren-Berg, Julian M J Pietsch, Alejandra Isabel, Ian B Dodd, Keith E Shearwi

    Road rules for traffic on DNA - systematic analysis of transcriptional roadblocking in vivo

    Get PDF
    Genomic DNA is bound by many proteins that could potentially impede elongation of RNA polymerase (RNAP), but the factors determining the magnitude of transcriptional roadblocking in vivo are poorly understood. Through systematic experiments and modeling, we analyse how roadblocking by the lac repressor (LacI) in Escherichia coli cells is controlled by promoter firing rate, the concentration and affinity of the roadblocker protein, the transcription-coupled repair protein Mfd, and promoter-roadblock spacing. Increased readthrough of the roadblock at higher RNAP fluxes requires active dislodgement of LacI by multiple RNAPs. However, this RNAP cooperation effect occurs only for strong promoters because roadblock-paused RNAP is quickly terminated by Mfd. The results are most consistent with a single RNAP also sometimes dislodging LacI, though we cannot exclude the possibility that a single RNAP reads through by waiting for spontaneous LacI dissociation. Reducing the occupancy of the roadblock site by increasing the LacI off-rate (weakening the operator) increased dislodgement strongly, giving a stronger effect on readthrough than decreasing the LacI on-rate (decreasing LacI concentration). Thus, protein binding kinetics can be tuned to maintain site occupation while reducing detrimental roadblocking.Nan Hao, Sandeep Krishna, Alexandra Ahlgren-Berg, Erin E. Cutts, Keith E. Shearwin, and Ian B. Dod

    Crystal structure of the P2 C-repressor: a binder of non-palindromic direct DNA repeats

    Get PDF
    As opposed to the vast majority of prokaryotic repressors, the immunity repressor of temperate Escherichia coli phage P2 (C) recognizes non-palindromic direct repeats of DNA rather than inverted repeats. We have determined the crystal structure of P2 C at 1.8 Å. This constitutes the first structure solved from the family of C proteins from P2-like bacteriophages. The structure reveals that the P2 C protein forms a symmetric dimer oriented to bind the major groove of two consecutive turns of the DNA. Surprisingly, P2 C has great similarities to binders of palindromic sequences. Nevertheless, the two identical DNA-binding helixes of the symmetric P2 C dimer have to bind different DNA sequences. Helix 3 is identified as the DNA-recognition motif in P2 C by alanine scanning and the importance for the individual residues in DNA recognition is defined. A truncation mutant shows that the disordered C-terminus is dispensable for repressor function. The short distance between the DNA-binding helices together with a possible interaction between two P2 C dimers are proposed to be responsible for extensive bending of the DNA. The structure provides insight into the mechanisms behind the mutants of P2 C causing dimer disruption, temperature sensitivity and insensitivity to the P4 antirepressor

    ROCK Inhibitor Is Not Required for Embryoid Body Formation from Singularized Human Embryonic Stem Cells

    Get PDF
    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications

    Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements

    Get PDF
    Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases–or recombination directionality factors—RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a “master controller” of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer

    Potent transcriptional interference by pausing of RNA polymerases over a downstream promoter

    Get PDF
    Elongating RNA polymerases (RNAPs) can interfere with transcription from downstream promoters by inhibiting DNA binding by RNAP and activators. However, combining quantitative measurement with mathematical modeling, we show that simple RNAP elongation cannot produce the strong asymmetric interference observed between a natural face-to-face promoter pair in bacteriophage lambda. Pausing of elongating polymerases over the RNAP-binding site of the downstream promoter is demonstrated in vivo and is shown by modeling to account for the increased interference. The model successfully predicts the effects on interference of treatments increasing or reducing pausing. Gene regulation by pausing-enhanced occlusion provides a general and potentially widespread mechanism by which even weak converging or tandem transcription, either coding or noncoding, can bring about strong in cis repression.Adam C. Palmer, Alexandra Ahlgren-Berg, J. Barry Egan, Ian B. Dodd and Keith E. Shearwinhttp://www.cell.com/molecular-cell/hom
    corecore