38 research outputs found

    Measurement of the electron energy spectrum and its moments in inclusive B -> Xe nu decays

    Get PDF
    We report a measurement of the inclusive electron energy spectrum for semileptonic decays of B mesons in a data sample of 52 million Y(4S)-->B(B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We determine the branching fraction, first, second, and third moments of the spectrum for lower cutoffs on the electron energy between 0.6 and 1.5 GeV. We measure the partial branching fraction to be B(B-->Xenu,E-e>0.6 GeV)=[10.36+/-0.06(stat.)+/-0.23(sys.)]%

    Oral palatopharyngoplasty October 1992

    No full text

    A dataset for fault detection and diagnosis of an air handling unit from a real industrial facility

    No full text
    This dataset was collected for the purpose of applying fault detection and diagnosis (FDD) techniques to real data from an industrial facility. The data for an air handling unit (AHU) is extracted from a building management system (BMS) and aligned with the Project Haystack naming convention. This dataset differs from other publicly available datasets in three main ways. Firstly, the dataset does not contain fault detection ground truth. The lack of labelled datasets in the industrial setting is a significant limitation to the application of FDD techniques found in the literature. Secondly, unlike other publicly available datasets that typically record values every 1 min or 5 min, this dataset captures measurements at a lower frequency of every 15 min, which is due to data storage constraints. Thirdly, the dataset contains a myriad of data issues. For example, there are missing features, missing time intervals, and inaccurate data. Therefore, we hope this dataset will encourage the development of robust FDD techniques that are more suitable for real world applications

    Data from: Testing for latitudinal gradients in defense at the macroevolutionary scale

    No full text
    Plant defences against herbivores are predicted to evolve to be greater in warmer climates, such as lower latitudes where herbivore pressure is also thought to be higher. Instead, recent findings are often inconsistent with this expectation, suggesting alternative hypotheses are needed. We tested for latitudinal gradients in plant defence evolution at the macroevolutionary scale by characterizing plant chemical defences across 80 species of the evening primroses, spanning both North and South America. We quantified phenolics in leaves, flowers and fruits, using advanced analytical chemistry techniques. Dominant individual ellagitannin compounds, total concentrations of ellagitannins, flavonoids, total phenolics, and compound diversity were quantified. Variation in these compounds were predicted with latitude, temperature, precipitation, and continent using phylogenetic generalized least squares multiple regression models. Latitude did not strongly explain patterns for the chemical defences. Instead, fruit total ellagitannins, oenothein A and total phenolics were greater in species inhabiting regions with colder climates. Using analytical chemistry and 80 species in two continents, we show that contrary to classic predictions, concentrations of secondary metabolites are not greater at lower latitudes or in warmer regions. We propose higher herbivore pressure in colder climates and gradients in resource availability as potential drivers of the observed patterns

    Latitudinal plant defence across Onagraceae

    No full text
    Plant chemical defence data for 80 species across Onagraceae and associated geographical and environmental variables
    corecore