15 research outputs found
Comparative Analysis of Super-Kamiokande and SNO Solar-Neutrino Data and the Photospheric Magnetic Field
We analyze Super-Kamiokande, SNO, and photospheric magnetic-field data for
the common time interval, namely the SNO D2O phase. Concerning rotational
modulation, the magnetic-field power spectrum shows the strongest peaks at the
second and sixth harmonics of the solar synodic rotation frequency [3 nu(rot)
and 7 nu(rot)]. The restricted Super-Kamiokande dataset shows strong modulation
at the second harmonic. The SNO D2O dataset shows weak modulation at that
frequency, but strong modulation in the sixth-harmonic frequency band. We
estimate the significance level of the correspondence of the Super-Kamiokande
second-harmonic peak with the corresponding magnetic-field peak to be 0.0004,
and the significance level of the correspondence of the SNO D2O sixth-harmonic
peak with the corresponding magnetic-field peak to be 0.009. By estimating the
amplitude of the modulation of the solar neutrino flux at the second harmonic
from the restricted Super-Kamiokande dataset, we find that the weak power at
that frequency in the SNO D2O power spectrum is not particularly surprising.
Concerning 9.43 yr-1, we find no peak at this frequency in the power spectrum
formed from the restricted Super-Kamiokande dataset, so it is no surprise that
this peak does not show up in the SNO D2O dataset, either.Comment: 32 pages, 8 tables, 16 figure
The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources
The production and analysis of distributed sources of 24Na and 222Rn in the
Sudbury Neutrino Observatory (SNO) are described. These unique sources provided
accurate calibrations of the response to neutrons, produced through
photodisintegration of the deuterons in the heavy water target, and to low
energy betas and gammas. The application of these sources in determining the
neutron detection efficiency and response of the 3He proportional counter
array, and the characteristics of background Cherenkov light from trace amounts
of natural radioactivity is described.Comment: 24 pages, 13 figure
A simple radionuclide-driven single-ion source
We describe a source capable of producing single barium ions through nuclear
recoils in radioactive decay. The source is fabricated by electroplating 148Gd
onto a silicon {\alpha}-particle detector and vapor depositing a layer of BaF2
over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+
ions from the BaF2 layer and emit them in the surrounding environment. The
simultaneous detection of an {\alpha} particle in the substrate detector allows
for tagging of the nuclear decay and of the Ba+ emission. The source is simple,
durable, and can be manipulated and used in different environments. We discuss
the fabrication process, which can be easily adapted to emit most other
chemical species, and the performance of the source
Weak axial nuclear heavy meson exchange currents and interactions of solar neutrinos with deuterons
Starting from the axial heavy meson exchange currents, constructed earlier in
conjunction with the Bethe--Salpeter equation, we first present the axial
--, -- and meson exchange Feynman amplitudes that satisfy
the partial conservation of the axial current. Employing these amplitudes, we
derive the corresponding weak axial heavy meson exchange currents in the
leading order in the 1/M expansion ( is the nucleon mass), suitable for the
nuclear physics calculations beyond the threshold energies and with wave
functions obtained by solving the Schr\"odinger equation with one--boson
exchange potentials. The constructed currents obey the nuclear form of the
partial conservation of the axial current. We apply the space component of
these currents in calculations of the cross sections for the disintegration of
deuterons by low energy (anti)neutrinos. The deuteron and the final state
nucleon--nucleon wave functions are derived (i) from a variant of the OBEPQB
potential, and (ii) from the Nijmegen 93 and Nijmegen I nucleon-nucleon
interaction. The extracted values of the constant , entering the
axial exchange currents of the pionless effective field theory, are in a
reasonable agreement with its value predicted by the dimensional analysis.Comment: 34 pages, 3 figures, 11 table
Power-spectrum analysis of Super-Kamiokande solar neutrino data, taking into account asymmetry in the error estimates
The purpose of this article is to carry out a power-spectrum analysis (based
on likelihood methods) of the Super-Kamiokande 5-day dataset that takes account
of the asymmetry in the error estimates. Whereas the likelihood analysis
involves a linear optimization procedure for symmetrical error estimates, it
involves a nonlinear optimization procedure for asymmetrical error estimates.
We find that for most frequencies there is little difference between the
power spectra derived from analyses of symmetrized error estimates and from
asymmetrical error estimates. However, this proves not to be the case for the
principal peak in the power spectra, which is found at 9.43 yr-1. A likelihood
analysis which allows for a "floating offset" and takes account of the start
time and end time of each bin and of the flux estimate and the symmetrized
error estimate leads to a power of 11.24 for this peak. A Monte Carlo analysis
shows that there is a chance of only 1% of finding a peak this big or bigger in
the frequency band 1 - 36 yr-1 (the widest band that avoids artificial peaks).
On the other hand, an analysis that takes account of the error asymmetry leads
to a peak with power 13.24 at that frequency. A Monte Carlo analysis shows that
there is a chance of only 0.1% of finding a peak this big or bigger in that
frequency band 1 - 36 yr-1. From this perspective, power spectrum analysis that
takes account of asymmetry of the error estimates gives evidence for
variability that is significant at the 99.9% level.
We comment briefly on an apparent discrepancy between power spectrum analyses
of the Super-Kamiokande and SNO solar neutrino experiments.Comment: 13 pages, 2 tables, 6 figure
A xenon gas purity monitor for EXO
We discuss the design, operation, and calibration of two versions of a xenon
gas purity monitor (GPM) developed for the EXO double beta decay program. The
devices are sensitive to concentrations of oxygen well below 1 ppb at an
ambient gas pressure of one atmosphere or more. The theory of operation of the
GPM is discussed along with the interactions of oxygen and other impurities
with the GPM's tungsten filament. Lab tests and experiences in commissioning
the EXO-200 double beta decay experiment are described. These devices can also
be used on other noble gases.Comment: 41 pages, 26 figure