117 research outputs found

    Variability and power enhancement of current controlled resistive switching devices

    Get PDF
    Producción CientíficaIn this work, the unipolar resistive switching behaviour of Ni/HfO2/Si(n+) devices is studied. The structures are characterized using both current and voltage sweeps, with the device resistance and its cycle-to-cycle variability being analysed in each case. Experimental measurements indicate a clear improvement on resistance states stability when using current sweeps to induce both set and reset processes. Moreover, it has been found that using current to induce these transitions is more efficient than using voltage sweeps, as seen when analysing the device power consumption. The same results are obtained for devices with a Ni top electrode and a bilayer or pentalayer of HfO2/Al2O3 as dielectric. Finally, kinetic Monte Carlo and compact modelling simulation studies are performed to shed light on the experimental results.Junta de Andalucía - FEDER (B-TIC-624-UGR20)Consejo Superior de Investigaciones Científicas (CSIC) (project 20225AT012)Ramón y Cajal (grant RYC2020-030150-I

    Climate-smart agriculture practices for mitigating greenhouse gas emissions

    Get PDF
    Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems

    Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review

    Get PDF
    [EN] An integrated assessment of the potential of different management practices for mitigating specific components of the total GHG budget (N2O and CH4 emissions and C sequestration) of Mediterranean agrosystems was performed in this study. Their suitability regarding both yield and environmental (e.g. nitrate leaching and ammonia volatilization) sustainability, and regional barriers and opportunities for their implementation were also considered. Based on its results best strategies to abate GHG emissions in Mediterranean agro-systems were proposed. Adjusting N fertilization to crop needs in both irrigated and rain-fed systems could reduce N2O emissions up to 50% compared with a non-adjusted practice. Substitution of N synthetic fertilizers by solid manure can be also implemented in those systems, and may abate N2O emissions by about 20% under Mediterranean conditions, with additional indirect benefits associated to energy savings and positive effects in crop yields. The use of urease and nitrification inhibitors enhances N use efficiency of the cropping systems and may mitigate N2O emissions up to 80% and 50%, respectively. The type of irrigation may also have a great mitigation potential in the Mediterranean region. Drip-irrigated systems have on average 80% lower N2O emissions than sprinkler systems and drip-irrigation combined with optimized fertilization showed a reduction in direct N2O emissions up to 50%. Methane fluxes have a relatively small contribution to the total GHG budget of Mediterranean crops, which can mostly be controlled by careful management of the water table and organic inputs in paddies. Reduced soil tillage, improved management of crop residues and agro-industry by-products, and cover cropping in orchards, are the most suitable interventions to enhance organic C stocks in Mediterranean agricultural soils. The adoption of the proposed agricultural practices will require farmers training. The global analysis of life cycle emissions associated to irrigation type (drip, sprinkle and furrow) and N fertilization rate (100 and 300 kg N ha(-1) yr(-1)) revealed that these factors may outweigh the reduction in GHG emissions beyond the plot scale. The analysis of the impact of some structural changes on top-down mitigation of GHG emissions revealed that 3-15% of N2O emissions could be suppressed by avoiding food waste at the end-consumer level. A 40% reduction in meat and dairy consumption could reduce GHG emissions by 20-30%. Reintroducing the Mediterranean diet (i.e. similar to 35% intake of animal protein) would therefore result in a significant decrease of GHG emissions from agricultural production systems under Mediterranean conditions. (C) 2016 Elsevier B.V. All rights reserved.The authors would like to thank the Spanish National R+D+i Plan (AGL2012-37815-C05-01, AGL2012-37815-C05-04) and very specifically the workshop held in December 2016 in Butron (Bizkaia) to synthesize the most promising measures to reduce N2O emissions from Spanish agricultural soils. BC3 is sponsored by the Basque Government. M. L. Cayuela thanks Fundacion Seneca for financing the project 19281/PI/14.Sanz-Cobeña, A.; Lassaletta, L.; Aguilera, E.; Del Prado, A.; Garnier, J.; Billen, G.; Iglesias, A.... (2017). Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture Ecosystems & Environment. 238:5-24. https://doi.org/10.1016/j.agee.2016.09.038S52423

    Strategies for GHG mitigation in Mediterranean cropping systems. A review

    Get PDF
    In this review we aimed to synthetize and analyze the most promising GHGs mitigation strategies for Mediterranean cropping systems. A description of most relevant measures, based on the best crop choice and management by farmers (i.e., agronomical practices), was firstly carried out. Many of these measures can be also efficient in other climatic regions, but here we provide particular results and discussion of their efficiencies for Mediterranean cropping systems. An integrated assessment of management practices on mitigating each component of the global warming potential (N2O and CH4 emissions and C sequestration) of production systems considering potential side-effects of their implementation allowed us to propose the best strategies to abate GHG emissions, while sustaining crop yields and mitigating other sources of environmental pollution (e.g. nitrate leaching and ammonia volatilization)

    B-cell regeneration profile and minimal residual disease status in bone marrow of treated multiple myeloma patients

    Get PDF
    © 2021 by the authors.B-cell regeneration during therapy has been considered as a strong prognostic factor in multiple myeloma (MM). However, the effects of therapy and hemodilution in bone marrow (BM) B-cell recovery have not been systematically evaluated during follow-up. MM (n = 177) and adult (≥50y) healthy donor (HD; n = 14) BM samples were studied by next-generation flow (NGF) to simultaneously assess measurable residual disease (MRD) and residual normal B-cell populations. BM hemodilution was detected in 41 out of 177 (23%) patient samples, leading to lower total B-cell, B-cell precursor (BCP) and normal plasma cell (nPC) counts. Among MM BM, decreased percentages (vs. HD) of BCP, transitional/naïve B-cell (TBC/NBC) and nPC populations were observed at diagnosis. BM BCP increased after induction therapy, whereas TBC/NBC counts remained abnormally low. At day+100 postautologous stem cell transplantation, a greater increase in BCP with recovered TBC/NBC cell numbers but persistently low memory B-cell and nPC counts were found. At the end of therapy, complete response (CR) BM samples showed higher CD19− nPC counts vs. non-CR specimens. MRD positivity was associated with higher BCP and nPC percentages. Hemodilution showed a negative impact on BM B-cell distribution. Different BM B-cell regeneration profiles are present in MM at diagnosis and after therapy with no significant association with patient outcome.This work has been supported by the International Myeloma Foundation-Black Swan Research Initiative, the EuroFlow Consortium (grant LSHB-CT-2006-018708); Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER), numbers: CB16/12/00400, CB16/12/00233, CB16/12/00369, CB16/12/00489 and CB16/12/00480; grant from Bilateral Cooperation Program between Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (Brasília/Brazil) and Dirección General de Políticas Universitárias (DGPU)-Ministério de Educación, Cultura y Deportes (Madrid/Spain) number DGPU 311/15; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil (FAPERJ) numbers: E26/110.105/2014 and E26/102.191/2013; grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil (CNPQ), number: 400194/2014-7. R.M.d.P. was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/DGPU), number: 000281/2016-06 and CAPES/PROEX 641/2018, Brazil; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil (FAPERJ) number: E01/200/537/2018

    Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma

    Get PDF
    [EN]Flow cytometry has become a highly valuable method to monitor minimal residual disease (MRD) and evaluate the depth of complete response (CR) in bone marrow (BM) of multiple myeloma (MM) after therapy. However, current flow-MRD has lower sensitivity than molecular methods and lacks standardization. Here we report on a novel next generation flow (NGF) approach for highly sensitive and standardized MRD detection in MM. An optimized 2-tube 8-color antibody panel was constructed in five cycles of design-evaluation-redesign. In addition, a bulk-lysis procedure was established for acquisition of ⩾107 cells/sample, and novel software tools were constructed for automatic plasma cell gating. Multicenter evaluation of 110 follow-up BM from MM patients in very good partial response (VGPR) or CR showed a higher sensitivity for NGF-MRD vs conventional 8-color flow-MRD -MRD-positive rate of 47 vs 34% (P=0.003)-. Thus, 25% of patients classified as MRD-negative by conventional 8-color flow were MRD-positive by NGF, translating into a significantly longer progression-free survival for MRD-negative vs MRD-positive CR patients by NGF (75% progression-free survival not reached vs 7 months; P=0.02). This study establishes EuroFlow-based NGF as a highly sensitive, fully standardized approach for MRD detection in MM which overcomes the major limitations of conventional flow-MRD methods and is ready for implementation in routine diagnostics.This work has been supported by the International Myeloma Foundation-Black Swan Research Initiative, the Red Temática de Investigación Cooperativa en Cáncer (RTICC); grant SA079U14 from the Consejería de Educación, Junta de Castilla y León, Valladolid, Spain and; grant DTS15/00119 from Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain

    Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data

    Get PDF
    Many recent reviews and meta-analyses of NO emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the NO emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for NO, distinguishing the effects of water management, crop type, and fertilizer management. The average overall EF for Mediterranean agriculture (EF) was 0.5%, which is substantially lower than the IPCC default value of 1%. Soil properties had no significant effect on EFs for NO. Increasing the N fertilizer rate led to higher EFs; when N was applied at rates greater than 400 kg N ha, the EF did not significantly differ from the 1% default value (EF: 0.82%). Liquid slurries led to emissions that did not significantly differ from 1%; the other fertilizer types were lower but did not significantly differ from each other. Rain-fed crops in Mediterranean regions have lower EFs (EF: 0.27%) than irrigated crops (EF: 0.63%). Drip irrigation systems (EF: 0.51%) had 44% lower EF than sprinkler irrigation methods (EF: 0.91%). Extensive crops, such as winter cereals (wheat, oat and barley), had lower EFs (EF: 0.26%) than intensive crops such as maize (EF: 0.83%). For flooded rice, anaerobic conditions likely led to complete denitrification and low EFs (EF: 0.19%). Our results indicate that NO emissions from Mediterranean agriculture are overestimated in current national greenhouse gas inventories and that, with the new EF determined from this study, the effect of mitigation strategies such as drip irrigation or the use of nitrification inhibitors, even if highly significant, may be smaller in absolute terms.The authors are grateful to M. Scholes, D. Plaza-Bonilla, S. Menendez, P. Merino, S.C. Maris, H. Heller, D. Savvas, C. K. Kontopoulou, who were contacted and kindly supplied any missing information necessary for the meta-analysis. Special thanks to J.P.C. Eekhout for preparing Fig. 1 and F. Estellés for providing the basic data for the calculation of the fertilization in Spain. Also thanks to two anonymous reviewers for their helpful comments. M. L. Cayuela was supported by a ‘Ramon y Cajal’ research contract from the Spanish Ministry of Economy and Competitiveness. Thanks to Fundación Séneca, Agencia Regional de Ciencia y Tecnología de la Región de Murcia for support (grant number 19281/PI/14). Australian studies included in the meta-analysis were funded by the Australian Government, the Grains Research and Development Corporation, and the Department of Agriculture and Food WAPeer reviewe

    Assessing nitrate groundwater hotspots in Europe reveals an inadequate designation of Nitrate Vulnerable Zones

    Get PDF
    Monitoring networks show that the European Union Nitrates Directive (ND) has had mixed success in reducing nitrate concentrations in groundwater. By combining machine learning and monitored nitrate concentrations (1992–2019), we estimate the total area of nitrate hotspots in Europe to be 401,000 km2, with 47% occurring outside of Nitrate Vulnerable Zones (NVZs). We also found contrasting increasing or decreasing trends, varying per country and time periods. We estimate that only 5% of the 122,000 km2 of hotspots in 2019 will meet nitrate quality standards by 2040 and that these may be offset by the appearance of new hotspots. Our results reveal that the effectiveness of the ND is limited by both time-lags between the implementation of good practices and pollution reduction and an inadequate designation of NVZs. Significant improvements in the designation and regulation of NVZs are necessary, as well as in the quality of monitoring stations in terms of spatial density and information available concerning sampling depth, if the objectives of EU legislation to protect groundwater are to be achieved

    Differential transcriptional profiling of damaged and intact adjacent dorsal root ganglia neurons in neuropathic pain

    Get PDF
    Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropinreleasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG
    corecore