29 research outputs found

    La gestión escolar, una contribución para la mejora en la supervisión

    Get PDF
    En el presente trabajo se aborda la caracterización de la práctica supervisora particular de la zona escolar No. 10 de educación especial en la región Altos Sur de Jalisco. Se analizan sus constitutivos, la gestión escolar y las potencialidades que se tienen para promover cambios. La supervisión escolar es considerada como una instancia que debe promover la mejora de la calidad en la educación y generar nuevas condiciones y oportunidades para que las escuelas cuenten con el apoyo y acompañamiento necesarios para iniciar y continuar procesos de mejora en la gestión escolar. La supervisión escolar ha transitado por caminos difíciles, ya que su ejercicio se confunde con la fiscalización, el control y el sinsentido administrativo. La importancia de la función de supervisión escolar es que, a través del acompañamiento, la orientación y la asesoría, busca contribuir a la mejora continua de las instituciones educativas. Para analizar la función, en este trabajo se presenta un registro puntual sobre las actividades que se llevan a cabo y se diseña una prospectiva de mejora que toma en cuenta las áreas de oportunidades y establece líneas de acción que inciden en la gestión escolar y contribuyen a la mejora de la práctica supervisora

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053.Peer ReviewedArticle signat per 497 autors/es: Thomas Sunn Pedersen1,2,∗ , I. Abramovic3, P. Agostinetti4, M. Agredano Torres1, S. Äkäslompolo1, J. Alcuson Belloso1, P. Aleynikov1, K. Aleynikova1, M. Alhashimi1, A. Ali1, N. Allen5, A. Alonso6, G. Anda7, T. Andreeva1, C. Angioni8, A. Arkhipov8, A. Arnold1, W. Asad8, E. Ascasibar6, M.-H. Aumeunier9, K. Avramidis10, E. Aymerich11, S.-G. Baek3, J. Bähner1, A. Baillod12, M. Balden1, M. Balden8, J. Baldzuhn1, S. Ballinger3, M. Banduch1, S. Bannmann1, A. Banon Navarro8, A. Bañon Navarro ´ 1, T. Barbui13, C. Beidler1, C. Belafdil9, A. Bencze7, A. Benndorf1, M. Beurskens1, C. Biedermann1, O. Biletskyi14, B. Blackwell15, M. Blatzheim1, T. Bluhm1, D. Böckenhoff1, G. Bongiovi16, M. Borchardt1, D. Borodin17, J. Boscary8, H. Bosch1,18, T. Bosmann19, B. Böswirth8, L. Böttger1, A. Bottino8, S. Bozhenkov1, R. Brakel1, C. Brandt1, T. Bräuer1, H. Braune1, S. Brezinsek17, K. Brunner1, S. Buller1, R. Burhenn1, R. Bussiahn1, B. Buttenschön1, A. Buzás7, V. Bykov1, I. Calvo6, K. Camacho Mata1, I. Caminal20, B. Cannas11, A. Cappa6, A. Carls1, F. Carovani1, M. Carr21, D. Carralero6, B. Carvalho22, J. Casas20, D. Castano-Bardawil17, F. Castejon6, N. Chaudhary1, I. Chelis23, A. Chomiczewska24, J.W. Coenen13,17, M. Cole1, F. Cordella25, Y. Corre9, K. Crombe26, G. Cseh7, B. Csillag7, H. Damm1, C. Day10, M. de Baar27, E. De la Cal6, S. Degenkolbe1, A. Demby13, S. Denk3, C. Dhard1, A. Di Siena8,28, A. Dinklage12, T. Dittmar17, M. Dreval14, M. Drevlak1, P. Drewelow1, P. Drews17, D. Dunai7, E. Edlund3, F. Effenberg29, G. Ehrke1, M. Endler1, D.A. Ennis5, F.J. Escoto6, T. Estrada6, E. Fable8, N. Fahrenkamp1, A. Fanni11, J. Faustin1, J. Fellinger1, Y. Feng1, W. Figacz4, E. Flom13, O. Ford1, T. Fornal24, H. Frerichs13, S. Freundt1, G. Fuchert1, M. Fukuyama30, F. Füllenbach1, G. Gantenbein10, Y. Gao1, K. Garcia13, J.M. García Regaña6, I. García-Cortés6, J. Gaspar31, D.A. Gates29, J. Geiger1, B. Geiger13, L. Giudicotti32, A. González6, A. Goriaev26,33, D. Gradic1, M. Grahl1, J.P. Graves12, J. Green13, E. Grelier9, H. Greuner8, S. Groß1, H. Grote1, M. Groth34, M. Gruca24, O. Grulke1,35, M. Grün1, J. Guerrero Arnaiz1, S. Günter8, V. Haak1, M. Haas1, P. Hacker1, A. Hakola36, A. Hallenbert1, K. Hammond29, X. Han17,37, S.K. Hansen3, J.H. Harris38, H. Hartfuß1, D. Hartmann1, D. Hathiramani1, R. Hatzky8, J. Hawke39, S. Hegedus7, B. Hein8, B. Heinemann8, P. Helander12, S. Henneberg1, U. Hergenhahn8,40, C. Hidalgo6, F. Hindenlang8, M. Hirsch1, U. Höfel1, K.P. Hollfeld17, A. Holtz1, D. Hopf8, D. Höschen17, M. Houry9, J. Howard19, X. Huang41, M. Hubeny17, S. Hudson29, K. Ida9, Y. Igitkhanov10, V. Igochine8, S. Illy10, C. Ionita-Schrittwieser42, M. Isobe39, M. Jabłczynska ´ 24, S. Jablonski24, B. Jagielski1, M. Jakubowski1, A. Jansen van Vuuren1, J. Jelonnek10, F. Jenko8, F. Jenko8, T. Jensen35, H. Jenzsch1, P. Junghanns8, J. Kaczmarczyk24, J. Kallmeyer1, U. Kamionka1, M. Kandler8, S. Kasilov43, Y. Kazakov26, D. Kennedy1, A. Kharwandikar1, M. Khokhlov1, C. Kiefer8, C. Killer1, A. Kirschner17, R. Kleiber1, T. Klinger12, S. Klose1, J. Knauer1, A. Knieps17, F. Köchl44, G. Kocsis7, Ya.I. Kolesnichenko45, A. Könies1, R. König1, J. Kontula34, P. Kornejew1, J. Koschinsky, M.M. Kozulia14, A. Krämer-Flecken17, R. Krampitz1, M. Krause1, N. Krawczyk24, T. Kremeyer1, L. Krier10, D.M. Kriete5, M. Krychowiak1, I. Ksiazek46, M. Kubkowska24, M. Kuczynski1, G. Kühner1, A. Kumar15, T. Kurki-Suonio34, S. Kwak1, M. Landreman47, P.T. Lang8, A. Langenberg1, H.P. Laqua12, H. Laqua1, R. Laube1, S. Lazerson1, M. Lewerentz1, C. Li17, Y. Liang17, Ch. Linsmeier17, J. Lion1, A. Litnovsky17,48, S. Liu37, J. Lobsien1, J. Loizu12, J. Lore38, A. Lorenz1, U. Losada6, F. Louche26, R. Lunsford29, V. Lutsenko45, M. Machielsen12, F. Mackel8, J. Maisano-Brown3, O. Maj8, D. Makowski49, G. Manduchi50, E. Maragkoudakis6, O. Marchuk17, S. Marsen1, E. Martines4, J. Martinez-Fernandez6, M. Marushchenko1, S. Masuzaki41, D. Maurer5, M. Mayer8, K.J. McCarthy6, O. Mccormack4, P. McNeely1, H. Meister8, B. Mendelevitch8, S. Mendes1, A. Merlo1, A. Messian26, A. Mielczarek49, O. Mishchenko1, B. Missal1, R. Mitteau9, V.E. Moiseenko14, A. Mollen1, V. Moncada9, T. Mönnich1, T. Morisaki41, D. Moseev1, G. Motojima41, S. Mulas6, M. Mulsow1, M. Nagel1, D. Naujoks1, V. Naulin35, T. Neelis19, H. Neilson29, R. Neu8, O. Neubauer17, U. Neuner1, D. Nicolai17, S.K. Nielsen35, H. Niemann1, T. Nishiza1, T. Nishizawa1, T. Nishizawa8, C. Nührenberg1, R. Ochoukov8, J. Oelmann17, G. Offermanns17 K. Ogawa41, S. Okamura41, J. Ölmanns17, J. Ongena26, J. Oosterbeek1, M. Otte1, N. Pablant29, N. Panadero Alvarez6, N. Panadero Alvarez6, A. Pandey1, E. Pasch1, R. Pavlichenko14, A. Pavone1, E. Pawelec46, G. Pechstein1, G. Pelka24, V. Perseo1, B. Peterson41, D. Pilopp1, S. Pingel1, F. Pisano11, B. Plöckl8, G. Plunk1, P. Pölöskei1, B. Pompe2, A. Popov51, M. Porkolab3, J. Proll19, M.J. Pueschel19,27, M.-E. Puiatti52, A. Puig Sitjes1, F. Purps1, K. Rahbarnia1, M. Rasinski ´ 17, J. Rasmussen35, A. Reiman29, F. Reimold1, M. Reisner8, D. Reiter17, M. Richou9, R. Riedl8, J. Riemann1, K. Riße1, G. Roberg-Clark1, V. Rohde8, J. Romazanov17, D. Rondeshagen1, P. Rong1, L. Rudischhauser1, T. Rummel1, K. Rummel1, A. Runov1, N. Rust1, L. Ryc24, P. Salembier20, M. Salewski35, E. Sanchez6, S. Satake41, G. Satheeswaran17, J. Schacht1, E. Scharff1, F. Schauer8, J. Schilling1, G. Schlisio1, K. Schmid8, J. Schmitt5, O. Schmitz13, W. Schneider1, M. Schneider1, P. Schneider8, R. Schrittwieser42, T. Schröder1, M. Schröder1, R. Schroeder1, B. Schweer26, D. Schwörer1, E. Scott1, E. Scott8, B. Shanahan1, G. Sias11, P. Sichta29, M. Singer1, P. Sinha29, S. Sipliä34, C. Slaby1, M. Sleczka53, H. Smith1, J. Smoniewski54, E. Sonnendrücker8, M. Spolaore4, A. Spring1, R. Stadler8, D. Stanczak24, T. Stange1, I. Stepanov26, L. Stephey13, J. Stober8, U. Stroth8,55, E. Strumberger8, C. Suzuki41, Y. Suzuki41, J. Svensson1, T. Szabolics7, T. Szepesi7, M. Szücs7, F.L. Tabares6, N. Tamura41, A. Tancetti35, C. Tantos10, J. Terry3, H. Thienpondt6, H. Thomsen1, M. Thumm10, J.M. Travere9, P. Traverso5, J. Tretter8, E. Trier8, H. Trimino Mora1, T. Tsujimura41, Y. Turkin1, A. Tykhyi45, B. Unterberg17, P. van Eeten1, B.Ph. van Milligen6, M. van Schoor26, L. Vano1, S. Varoutis10, M. Vecsei7, L. Vela56, J.L. Velasco6, M. Vervier17, N. Vianello50, H. Viebke1, R. Vilbrandt1, G. Vogel8, N. Vogt1, C. Volkhausen1, A. von Stechow1, F. Wagner1, E. Wang17, H. Wang57, F. Warmer1, T. Wauters26, L. Wegener1, T. Wegner1, G. Weir1, U. Wenzel1, A. White3, F. Wilde1, F. Wilms1, T. Windisch1, M. Winkler1, A. Winter1, V. Winters1, R. Wolf118, A.M. Wright29, G.A. Wurden39, P. Xanthopoulos1, S. Xu17, H. Yamada58, H. Yamaguchi41, M. Yokoyama41, M. Yoshinuma41, Q. Yu8, M. Zamanov14, M. Zanini1, M. Zarnstorff29, D. Zhang1, S. Zhou17, J. Zhu1, C. Zhu29, M. Zilker8, A. Zocco1, H. Zohm8, S. Zoletnik7 and L. Zsuga7 // 1 Max Planck Institute for Plasma Physics, Garching and Greifswald, Germany: 2 University of Greifswald, Greifswald, Germany; 3 Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America; 4 Consorzio RFX, Corso Stati Uniti, 4-35127 Padova, Italy; 5 Auburn University, Auburn, AL 36849, United States of America; 6 CIEMAT, Avenida Complutense, 40, 28040 Madrid, Spain; 7 Center for Energy Research, Konkoly-Thegeut 29-33, 1121 Budapest, Hungary; 8 Max-Planck-Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching bei München, Germany; 9 CEA Cadarache, 13115 Saint-Paul-lez-Durance, France; 10 Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany; 11 University of Cagliari, Via Universita, 40, 09124 Cagliari, Italy; 12 École Polytechnique Fédérale de Lausanne, Swiss Plasma Center, CH-1015 Lausanne, Switzerland; 13 University of Wisconsin–Madison, Engineering Drive, Madison, WI 53706, United States of America; 14 Institute of Plasma Physics, National Science Center ‘Kharkiv Institute of Physics and Technology’, Kharkiv, Ukraine; 15 The Australian National University, Acton ACT 2601, Canberra, Australia; 16 Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 6, Palermo, 90128, Italy; 17 Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany; 18 Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; 19 Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands; 20 Universitat Politècnica de Catalunya. BarcelonaTech, C. Jordi Girona, 31, 08034 Barcelona, Spain; 21 Culham Center for Fusion Energy, Abingdon OX14 3EB, United Kingdom; 22 Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; 23 Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece; 24 Institute of Plasma Physics and Laser Microfusion, 23 Hery Str., 01-497 Warsaw, Poland; 25 ENEA—Centro Ricerche Frascati, Via Enrico Fermi, 45, 00044 Frascati RM, Italy; 26 Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, B-1000 Brussels, Belgium; 27 Dutch Institute for Fundamental Energy Research, PO Box 6336, 5600 HH Eindhoven, Netherlands; 28 University of Texas, Austin, TX, United States of America; 29 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, United States of America; 30 Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; 31 Aix-Marseille University, Jardin du Pharo, 58 Boulevard Charles Livon, 13007, Marseille, France; 32 Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova, Italy; 33 Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; 34 Aalto University, 02150 Espoo, Finland; 35 Department of Physics, Technical University of Denmark, Anker Engelunds Vej, 2800 Kgs Lyngby, Denmark; 36 VTT Technical Research Center of Finland Ltd., PO Box 1000, FI-02044 VTT, Finland; 37 Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, Anhui, China; 38 Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, United States of America; 39 Los Alamos National Laboratory, NM 87545, United States of America; 40 Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany; 41 National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki, Gifu Prefecture 509-5292, Japan; 42 Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria; 43 Graz University of Technology, Rechbauerstraße 12, 8010 GRAZ, Austria; 44 Austrian Academy of Science, Doktor-Ignaz-Seipel-Platz 2, 1010 Wien, Austria; 45 Institute for Nuclear Research, prospekt Nauky 47, Kyiv 03028, Ukraine; 46 University of Opole, plac Kopernika 11a, 45-001 Opole, Poland; 47 University of Maryland, Paint Branch Drive, College Park, MA 20742, United States of America; 48 National Research Nuclear University MEPhI, 115409 Moscow, Russian Federation; 49 Department of Microelectronics and Computer Science, Lodz University of Technology, Wolczanska 221/223, 90-924 Lodz, Poland; 50 Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 7, 00185 Roma, Italy; 51 Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation; 52 Istituto di Fisica del Plasma Piero Caldirola, Via Roberto Cozzi, 53, 20125 Milano, Italy; 53 University of Szczecin, 70-453, aleja Papieza Jana Pawła II 22A, Szczecin, Poland; 54 Lawrence University, 711 E Boldt Way, Appleton, WI 54911, United States of America; 55 Physik-Department E28, Technische Universität München, 85747 Garching, Germany; 56 Universidad Carlos III de Madrid, Av. de la Universidad, 30 Madrid, Spain; 57 Yale University, New Haven, CT 06520, United States of America; 58 University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chhiab 277-0882, JapanObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnolo­gies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminantPostprint (published version

    Coils and power supplies design for the SMART tokamak

    Get PDF
    Agredano-Torres, M., et al.A new spherical tokamak, the SMall Aspect Ratio Tokamak (SMART), is currently being designed at the University of Seville. The goal of the machine is to achieve a toroidal field of 1 T, a plasma current of 500 kA and a pulse length of 500 ms for a plasma with a major radius of 0.4 m and minor radius of 0.25 m. This contribution presents the design of the coils and power supplies of the machine. The design foresees a central solenoid, 12 toroidal field coils and 8 poloidal field coils. Taking the current waveforms for these set of coils as starting point, each of them has been designed to withstand the Joule heating during the tokamak operation time. An analytical thermal model is employed to obtain the cross sections of each coil and, finally, their dimensions and parameters. The design of flexible and modular power supplies, based on IGBTs and supercapacitors, is presented. The topologies and control strategy of the power supplies are explained, together with a model in MATLAB Simulink to simulate the power supplies performance, proving their feasibility before the construction of the system.This work received funding from the Fondo Europeo de Desarollo Regional (FEDER) by the European Commission under grant agreement numbers IE17-5670 and US-15570. Furthermore, it has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement no. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

    Magnetic equilibrium design for the SMART tokamak

    Get PDF
    The SMall Aspect Ratio Tokamak (SMART) device is a new compact (plasma major radius R≥0.40 m, minor radius a≥0.20 m, aspect ratio A≥1.7) spherical tokamak, currently in development at the University of Seville. The SMART device has been designed to achieve a magnetic field at the plasma center of up to B=1.0 T with plasma currents up to I=500 kA and a pulse length up to τ=500 ms. A wide range of plasma shaping configurations are envisaged, including triangularities between −0.50≤δ≤0.50 and elongations of κ≤2.25. Control of plasma shaping is achieved through four axially variable poloidal field coils (PF), and four fixed divertor (Div) coils, nominally allowing operation in lower-single null, upper-single null and double-null configurations. This work examines phase 2 of the SMART device, presenting a baseline reference equilibrium and two highly-shaped triangular equilibria. The relevant PF and Div coil current waveforms are also presented. Equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.The authors would like to thank the VEST team for their technical and engineering support. This work received funding from the Fondo Europeo de Desarollo Regional (FEDER) by the European Commission under grant agreement numbers IE17-5670 and US-15570. In addition support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 805162) is gratefully acknowledged

    Mechanical and electromagnetic design of the vacuum vessel of the SMART tokamak

    Get PDF
    The SMall Aspect Ratio Tokamak (SMART) is a new spherical device that is currently being designed at the University of Seville. SMART is a compact machine with a plasma major radius (R) greater than 0.4 m, plasma minor radius (a) greater than 0.2 m, an aspect ratio (A) over than 1.7 and an elongation (k) of more than 2. It will be equipped with 4 poloidal field coils, 4 divertor field coils, 12 toroidal field coils and a central solenoid. The heating system comprises of a Neutral Beam Injector (NBI) of 600 kW and an Electron Cyclotron Resonance Heating (ECRH) of 6 kW for pre-ionization. SMART has been designed for a plasma current (I) of 500 kA, a toroidal magnetic field (B) of 1 T and a pulse length of 500 ms preserving the compactness of the machine. The free boundary equilibrium solver code FIESTA [1] coupled to the linear time independent, rigid plasma model RZIP [2] has been used to calculate the target equilibria taking into account the physics goals, the required plasma parameters, vacuum vessel structures and power supply requirements. We present here the final design of the SMART vacuum vessel together with the Finite Element Model (FEM) analysis carried out to ensure that the tokamak vessel provides high quality vacuum and plasma performance withstanding the electromagnetic j×B loads caused by the interaction between the eddy currents induced in the vessel itself and the surrounding magnetic fields. A parametric model has been set up for the topological optimization of the vessel where the thickness of the wall has been locally adapted to the expected forces. An overview of the new machine is presented here.This work received funding from the Fondo Europeo de Desarollo Regional (FEDER) by the European Commission under grant agreement numbers IE17-5670 and US-15570. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio

    Coils and power supply design for the SMall Aspect Ratio Tokamak (SMART) of the University of Seville

    No full text
    Durante el último siglo, la producción energética ha sido predominantemente abastecida por plantas de combustible fósil. Los efectos nocivos sobre el medio ambiente, que los recursos fósiles han causado, han despertado conciencia sobre la necesidad de una fuente alternativa de energía. Las energías renovables están liderando este cambio. Sin embargo, la dependencia en las condiciones climáticas de estas fuentes de energía, dificultan alcanzar un sistema 100% renovable. Por tanto, una fuente de energía diferente, actuando como central de base, podría complementar a un sistema con una alta penetración de energías renovables. La energía de fusión nuclear emerge como una solución prometedora para lograr una sociedad sostenible sin emisiones de gases de efecto invernadero ni residuos radiactivos de vida larga. La investigación en fusión nuclear pretende obtener una planta comercial en las próximas décadas. Uno de los dispositivos mas avanzados es el tokamak, donde fuerte campos magnéticos crean y confinan un plasma donde la reacción de fusión se alcanza. Los campos magnéticos están inducidos por bobinas, que necesitan ser alimentadas por formas de corriente específicas controladas por sus fuentes de alimentación. Un nuevo dispositivo de investigación de fusión, SMART (SMall Aspect Ratio Tokamak, tokamak de pequeña relación de aspecto), está siendo diseñado en la Universidad de Sevilla para dos fases de operación. Por tanto, el objetivo principal de esta contribución es el diseño de un sistema capaz de crear y confinar el plasma dentro del dispositivo. El equipo de física dentro del grupo de Ciencia del Plasma y Tecnología de Fusión ha obtenido las curvas de corriente requeridas para las dos fases de SMART. Utilizando las curvas como punto de partida, cada grupo de bobina es diseñado para soportar el calentamiento por efecto Joule durante la operación del tokamak para ambas fases. Con este fin, se define un modelo térmico analítico, y las restricciones debido a la geometría de la vasija son tenidas en cuenta para obtener el diseño de las bobinas. Debido a las altas corrientes requeridas en los tokamaks, los sistemas de alimentación son una parte exigente del diseño. La mayoría de los tokamaks relevantes utilizan sistemas basados en tiristores y conectados a la red o a volantes de inercia. Sin embargo, siguiendo la tendencia actual, el diseño de un sistema de alimentación más flexible y modular, basado en IGBT y supercondensadores, se presenta en este documento para la primera fase de operación de SMART. Se explican las topologías y la estrategia de control de los sistemas de alimentación. El desempeño del sistema es validado en MATLAB Simulink, demostrando su viabilidad antes de la construcción del sistema.During the last century, energy production has been predominantly supplied by fossil fuel power plants. The negative environmental effects that fossil fuels have caused, have raised awareness of an alternative source of energy. Renewable energies are leading this change. However, the dependency on weather conditions of these sources of energy, stood in the way of a 100% renewable energy system. Therefore, a different energy source, acting as baseload producer, could complement a system with high penetration of renewable energies. Nuclear fusion energy arisen as a promising solution to achieve a sustainable society without green-house effect gasses emissions and long-lived radioactive wastes [1]. Nuclear fusion research aims to reach a commercial nuclear fusion power plant in the next decades. One of the most advanced devices is the tokamak, where strong magnetic fields create and confine a plasma where the fusion reaction is achieved. The magnetic fields are induced by coils, which need to be fed by specific current waveforms controlled by their power supplies. A new research fusion device, SMART (SMall Aspect Ratio Tokamak), is being designed at the University of Seville for two operation phases. Therefore, the main goal of this contribution is to design a system capable of creating and confining the plasma inside the device. The physics team of the Plasma Science and Fusion Technology group has obtained the current waveforms required for the two phases of SMART. Taking the current waveforms as starting point, each set of coils has been designed to withstand the Joule heating during the tokamak operation for both phases. To this end, an analytical thermal model is defined and the vessel geometry restrictions are considered to achieve the coils design. Due to the large currents required in tokamaks, power supplies are a challenging part of their design. Most relevant tokamaks use thyristor-based power supplies fed by flywheels or the grid [2]. Nevertheless, following the present trend [3], the design of a more flexible and modular power suppliy, based on IGBTs and supercapacitors, is presented in this document for the first operation phase of SMART. The topologies and control system of the power supplies are explained. The performance of system has been validated in MATLAB Simulink, proving its feasibility before the construction of the system.Universidad de Sevilla. Máster en Ingeniería Industria

    Coils and power supplies design for the SMART tokamak

    No full text
    Article number 112683A new spherical tokamak, the SMall Aspect Ratio Tokamak (SMART), is currently being designed at the University of Seville. The goal of the machine is to achieve a toroidal field of 1 T, a plasma current of 500 kA and a pulse length of 500 ms for a plasma with a major radius of 0.4 m and minor radius of 0.25 m. This contribution presents the design of the coils and power supplies of the machine. The design foresees a central solenoid, 12 toroidal field coils and 8 poloidal field coils. Taking the current waveforms for these set of coils as starting point, each of them has been designed to withstand the Joule heating during the tokamak operation time. An analytical thermal model is employed to obtain the cross sections of each coil and, finally, their dimensions and parameters. The design of flexible and modular power supplies, based on IGBTs and supercapacitors, is presented. The topologies and control strategy of the power supplies are explained, together with a model in MATLAB Simulink to simulate the power supplies performance, proving their feasibility before the construction of the system.Feder (UE) IE17-5670Feder (UE) US-15570Horizonte 2020 (Unión Europea) 63305
    corecore