2,144 research outputs found

    Brief communication: The effects of disuse on the mechanical properties of bone: What unloading tells us about the adaptive nature of skeletal tissue

    Full text link
    The intricate link between load environment and skeletal health is exemplified by the severe osteopenia that accompanies prolonged periods of immobilization, frequently referred to as disuse osteoporosis. Investigating the effects disuse has on the structural properties of bone provides a unique opportunity to better understand how mechanical loads influence the adaptation and maintenance of skeletal tissue. Here, we report results from an examination of multiple indicators of bone metabolism (e.g., mean osteon density, mean osteon size, bone mass, and bone area distribution) within the major long bones of individuals with distinct activity level differences. Results are based on a sample comprising two subjects that suffered from long‐term quadriplegia and 28 individuals of comparable age that had full limb mobility. Although limited in sample size, our findings suggest bones associated with long‐term disuse have lower osteon densities and larger osteon areas compared to individuals of normal mobility, reflecting dramatically lower remodeling rates potentially related to reduced strain levels. Moreover, immobilized skeletal elements demonstrate a reduced percentage of cortical area present resulting from endosteal resorption. Differences between mobility groups in the percentage of cortical area present and bone distribution of all skeletal elements, suggests bone modeling activity is negligible in the unloaded adult skeleton. Additional histomorphometric comparisons reveal potential intraskeletal differences in bone turnover rates suggesting remodeling rates are highest within the humeri and femora. Addition of more immobilized individuals in the future will allow for quantitative statistical analyses and greater consideration of human variation within and between individuals. Am J Phys Anthropol 2012. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94522/1/22150_ftp.pd

    G_2 Perfect-Fluid Cosmologies with a proper conformal Killing vector

    Full text link
    We study the Einstein field equations for spacetimes admitting a maximal two-dimensional abelian group of isometries acting orthogonally transitively on spacelike surfaces and, in addition, with at least one conformal Killing vector. The three-dimensional conformal group is restricted to the case when the two-dimensional abelian isometry subalgebra is an ideal and it is also assumed to act on non-null hypersurfaces (both, spacelike and timelike cases are studied). We consider both, diagonal and non-diagonal metrics and find all the perfect-fluid solutions under these assumptions (except those already known). We find four families of solutions, each one containing arbitrary parameters for which no differential equations remain to be integrated. We write the line-elements in a simplified form and perform a detailed study for each of these solutions, giving the kinematical quantities of the fluid velocity vector, the energy-density and pressure, values of the parameters for which the energy conditions are fulfilled everywhere, the Petrov type, the singularities in the spacetimes and the Friedmann-Lemaitre-Robertson-Walker metrics contained in each family.Comment: Latex, no figure

    Top quark physics in hadron collisions

    Full text link
    The top quark is the heaviest elementary particle observed to date. Its large mass makes the top quark an ideal laboratory to test predictions of perturbation theory concerning heavy quark production at hadron colliders. The top quark is also a powerful probe for new phenomena beyond the Standard Model of particle physics. In addition, the top quark mass is a crucial parameter for scrutinizing the Standard Model in electroweak precision tests and for predicting the mass of the yet unobserved Higgs boson. Ten years after the discovery of the top quark at the Fermilab Tevatron top quark physics has entered an era where detailed measurements of top quark properties are undertaken. In this review article an introduction to the phenomenology of top quark production in hadron collisions is given, the lessons learned in Tevatron Run I are summarized, and first Run II results are discussed. A brief outlook to the possibilities of top quark research a the Large Hadron Collider, currently under construction at CERN, is included.Comment: 84 pages, 32 figures, accepted for publication by Reports on Progress in Physic

    An optically actuated surface scanning probe

    Get PDF
    We demonstrate the use of an extended, optically trapped probe that is capable of imaging surface topography with nanometre precision, whilst applying ultra-low, femto-Newton sized forces. This degree of precision and sensitivity is acquired through three distinct strategies. First, the probe itself is shaped in such a way as to soften the trap along the sensing axis and stiffen it in transverse directions. Next, these characteristics are enhanced by selectively position clamping independent motions of the probe. Finally, force clamping is used to refine the surface contact response. Detailed analyses are presented for each of these mechanisms. To test our sensor, we scan it laterally over a calibration sample consisting of a series of graduated steps, and demonstrate a height resolution of ∌ 11 nm. Using equipartition theory, we estimate that an average force of only ∌ 140 fN is exerted on the sample during the scan, making this technique ideal for the investigation of delicate biological samples

    G_2 cosmological models separable in non-comoving coordinates

    Get PDF
    We study new separable orthogonally transitive abelian G_2 on S_2 models with two mutually orthogonal integrable Killing vector fields. For this purpose we consider separability of the metric functions in a coordinate system in which the velocity vector field of the perfect fluid does not take its canonical form, providing thereby solutions which are non-separable in comoving coordinates in general. Some interesting general features concerning this class of solutions are given. We provide a full classification for these models and present several families of explicit solutions with their properties.Comment: latex, 26 pages, accepted for publication in Class. Quantum Gra

    Uterine Mast Cells and Immunoglobulin-E Antibody Responses During Clearance of \u3ci\u3eTritrichomonas foetus\u3c/i\u3e

    Get PDF
    We showed earlier that Tritrichomonas foetus–specific bovine immunoglobulin (Ig)G1 and IgA antibodies in uterine and vaginal secretions are correlated with clearance of this sexually transmitted infection. Eosinophils have been noted in previous studies of bovine trichomoniasis but the role of mast cells and IgE responses have not been reported. The hypothesis that IgE and mast cell degranulation play a role in clearance was tested in 25 virgin heifers inseminated experimentally and infected intravaginally with T. foetus strain D1 at estrus and cultured weekly. Groups were euthanatized at 3, 6, 9, or 12 weeks, when tissues were fixed and secretions were collected for culture and antibody analysis. Immunohistochemistry using a monoclonal antibody to a soluble lipophosphoglycan (LPG)–containing surface antigen (TF1.17) demonstrated antigen uptake by uterine epithelial cells. Lymphoid nodules were detected below antigen-positive epithelium. Little IgG2 antibody was detected but IgG1, IgA, IgM, and IgE T. foetus–specific antibodies increased in uterine secretions at weeks 6 and 9 after infection. This was inversely proportional to subepithelial mast cells numbers and most animals cleared the infection by the sampling time after the lowest mast cell count. Furthermore, soluble antigen was found in uterine epithelium above inductive sites (lymphoid nodules). Cross-linking of IgE on mast cells by antigen and perhaps LPG triggering appears to have resulted in degranulation. Released cytokines may account for production of predominantly Th2 (IgG1 and IgE) and IgA antibody responses, which are related to clearance of the infection

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints

    Atomic-scale modeling of the deformation of nanocrystalline metals

    Get PDF
    Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today. We present molecular dynamics simulations of nanocrystalline copper with grain sizes up to 13 nm. Two different deformation mechanisms are active, one is deformation through the motion of dislocations, the other is sliding in the grain boundaries. At the grain sizes studied here the latter dominates, leading to a softening as the grain size is reduced. This implies that there is an ``optimal'' grain size, where the hardness is maximal. Since the grain boundaries participate actively in the deformation, it is interesting to study the effects of introducing impurity atoms in the grain boundaries. We study how silver atoms in the grain boundaries influence the mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see http://www.fysik.dtu.dk/~schiotz/publist.htm

    Television exposure, consumer culture values, and lower well-being among preadolescent children: the mediating role of consumer-focused coping strategies

    Get PDF
    Previous research has linked materialism to lower well‐being in children, and recent findings suggest that this link is heightened among those exposed to high levels of advertising. One proposal is that children may be pursuing consumer culture ideals (CCIs) – orienting to material possessions and physical appearance – as a maladaptive coping strategy for dealing with underlying distress. The present work offers the first direct evaluation of this theoretically plausible hypothesis. In Study 1, higher scores on our measure of consumer‐focused coping (CFC) not only predicted lower well‐being in a sample of 109 9‐ to 11‐year‐olds, but also served as mediator in the indirect link between the number of hours spent watching television and lower well‐being. Study 2 tested our expanded model of these processes in a sample of 380 9‐ to 11‐year‐olds. Specifically, structural equation modelling revealed that frequency of watching commercial (advertising‐rich) television in particular predicted greater CFC. This, in turn, predicted greater endorsement of CCIs, which then predicted lower well‐being. Implications for theoretical models and educational interventions are discussed
    • 

    corecore