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ABSTRACT 

Adult stature variation is commonly attributed to differential stress-levels during development. However, 

due to selective mortality and heterogeneous frailty, a population's tall stature may be more indicative of 

high selective pressures than of positive life conditions. This article examines stature in a biocultural 

context and draws parallels between bioarchaeological and living populations to explore the 

multidimensionality of stature variation in the past. This study investigates: 1) stature differences between 

archaeological populations exposed to low or high stress (inferred from skeletal indicators); 2) similarities in 

growth retardation patterns between archaeological and living groups; and 3) the apportionment of 

variance in growth outcomes at the regional level in archaeological and living populations. Anatomical 

stature estimates were examined in relation to skeletal stress indicators (cribra orbitalia, porotic 

hyperostosis, linear enamel hypoplasia) in two medieval bioarchaeological populations. Stature and 

biocultural information were gathered for comparative living samples from South America. Results indicate 

1) significant (P < 0.01) differences in stature between groups exposed to different levels of skeletal stress; 

2) greater prevalence of stunting among living groups, with similar patterns in socially stratified 

archaeological and modern groups; and 3) a degree of regional variance in growth outcomes consistent 

with that observed for highly selected traits. The relationship between early stress and growth is 

confounded by several factors—including catch-up growth, cultural buffering, and social inequality. The 

interpretations of early life conditions based on the relationship between stress and stature should be 

advanced with caution. Am J Phys Anthropol 155:229–242, 2014. © 2014 Wiley Periodicals, Inc. 

 

In recent years, genomic analyses have shown that hundreds of genes are likely involved in controlling the 

expression of stature (Lettre, 2009) and large-scale twin studies have provided high estimates of stature 



heritability (females: 0.68–0.84; males: 0.89–0.93) among affluent populations (Silventoinen et al., 2003). 

However, the large number of genes involved implies that growth is not a predefined, immutable process. 

Rather, skeletal growth outcomes result from complex interactions between an individual's genetic 

potential and nutritional and health compromises experienced during growth and development (King and 

Ulijaszek, 1999). Consequently, while the potential for adult stature may be highly heritable, its expression 

is contingent upon environmental quality during growth and development. 

Biological anthropologists have long observed a general association between a population's stature and its 

overall life conditions. Because early life conditions in the past cannot be assessed directly, 

bioarchaeologists routinely rely on stature as an indicator of overall health status during growth (Saunders 

and Hoppa, 1993; Larsen, 1997; Hoppa and Fitzgerald, 1999). Exemplary cases of stature variation over 

time and in relation to major population events (e.g., subsistence shifts, population contact, climate 

change) have been reported and demonstrated the value of skeletal growth for reconstructing accounts of 

life in the past (Larsen, 1997). Nonetheless, the relationship between early life conditions and growth is 

often equivocal (Larsen, 1997; Temple, 2008). In particular, as more information on the biocultural 

environment experienced by past populations becomes available, the long-held assumption that stature is 

a clear indicator of early life conditions comes into question. This evidence does not imply that stature has 

little inferential value; rather, it underlines the need for an improved understanding of the 

multidimensionality of statural growth variation. 

Research in human biology over the past few decades has shown that, except in the case of certain pigmy 

populations whose short stature has genetic bases and was arguably selected for being advantageous in 

certain environments (Shea and Bailey, 1996; Perry and Dominy, 2009), in most human groups across the 

globe reduced growth outcomes are associated with adverse conditions experienced early in life. Starting in 

the 1980s, many scholars dedicated their efforts to evaluating whether reduction in statural growth was 

associated with functional impairments or if it represented an adaptive response to limited resource 

availability. Under this latter view, height reduction would be a no-cost adaptation to suboptimal 

environmental conditions and individuals would be “small but healthy” (Seckler, 1980). Numerous authors 

have since demonstrated that a low height-for-age (i.e., stunting) is a major sign of poor health, and is 

associated with compromised immune competence, poor psychological performance, diminished 

productivity, reduced reproductive potential, and increased mortality risk (Martorell, 1989; Pelletier et al., 

1995; Paajanen et al., 2010). Most importantly, the “small but healthy” debate propelled growth studies 

toward an improved understanding of the “process of becoming small” (Beaton, 1989) and its long-term 

consequences in relation to a variety of biocultural factors (Martorell and Habitch, 1986; Messer, 1989). 

Today, growth retardation, or stunting, may still affect more than 50% of children younger than 5 years of 

age in some developing countries (WHO, 2014) and is relatively widespread even among the poorest 

segments of affluent populations in countries such as the United States (Lewit and Kerrebrock, 1997). 

Research efforts on this topic have underlined the complex nature of growth processes and their 

disruptions, and it is clear that stunting may be caused by a variety of factors, including food scarcity, 

malnutrition, micronutrient deficiencies, parasitic infestations and infectious disease (Martorell et al., 1975; 

Allen, 1994; Ulijaszek, 1994; Black et al., 2008). Additionally, regardless of their specific nature, the timing, 

duration and intensity of growth insults may have different long-term impacts on growth (Martorell et al., 

1994). 

Further complicating the understanding of the mechanisms affecting adult growth outcomes is the 

potential for catch-up growth, that is, the reversal of earlier growth retardation. Evidence indicates that the 

potential for catch-up growth depends on several factors, but mostly on age at onset of stunting and age at 

the time environmental conditions are improved. Catch-up growth has been documented in several 

populations, but its mechanisms are not entirely known (Martorell et al., 1994). In general, it is thought 

that in response to improved environmental conditions stunted children can—at least in part—recover 



from linear growth retardation through increased growth rates and/or delayed maturation (Golden, 1994; 

Martorell et al., 1994; Gafni and Baron, 2000). However, faster growth rates in an improved environment 

might actually anticipate maturation, hence reducing the potential for catch-up growth (Proos et al., 1991). 

Even though the mechanisms by which improved conditions mediate catch-up growth are complex, it 

appears that developmental plasticity throughout the life course may allow for growth recovery at different 

phases of growth. In contrast with a previously held notion that allowed for catch-up growth only during 

early childhood, growing literature on the topic indicates that growth recovery may take place also during 

pre-adolescent (Adair et al., 1999) and even adolescent, pre-adult (Prentice et al., 2013) years. Overall, the 

research on growth outcomes and growth retardation shows incontrovertibly that stature is very sensitive 

to perturbations. However, the complexity of growth and its disruptions implies that stature, as the 

terminal, measurable outcome of a prolonged and mutable process, may not always allow us to infer 

growth conditions experienced by individuals and populations. This is clearly problematic for evaluating 

growth and development in past human groups, which are typically characterized by limited relevant 

contextual information on nutrition and disease throughout the life course. 

Nonetheless, even with a dearth of specific information on environmental quality, it may be argued that 

being a sensitive indicator of developmental stress, stature undergoes natural selection. It may be selected 

directly in relation to specific metabolic or climatic adaptations (Perry and Dominy, 2009), or indirectly 

because it is associated with other undesirable growth outcomes (Martorell, 1989). Under these latter 

circumstances, when short stature is a correlate of poor health, the expectation is that selection will 

eliminate short-statured individuals from the population. The implication of this selective pressure is that 

the survivor group's stature distribution may not be representative of all variation within a population. In 

fact, the observed variation, as screened by natural selection, is contingent upon environmental conditions. 

This implies that, when overall stress is elevated, selection on stature should be more evident due to an 

overall increase in mortality. In contrast, when overall stress levels decrease, natural selection is lessened 

and mortality decreases, hence increasing the degree of observable variation in stature (Darwin, 1859). On 

theoretical grounds, it is possible to predict that under stricter selection the survivor group's mean stature 

will be greater than in phases of milder selection. This counterintuitive conclusion was illustrated by Wood 

and colleagues (1992) in their formulation of the “Osteological Paradox.” When applied to stature, the 

paradox challenges us to refrain from simplistic conclusions based on absolute bone lengths. Regardless, 

the study of skeletal growth in past populations is fraught with complications intrinsic to the nature of 

skeletal assemblages drawn from archaeological contexts, such as small sample size, poor preservation, 

minimal knowledge of the factors contributing to environmental quality, and composition biases of 

mortuary samples. Subadult skeletal growth is particularly problematic, because these individuals represent 

the segment of the population that did not survive stressors experienced during growth and development. 

Adult stature, on the other hand, may provide insights into early life conditions of the group who survived 

the juvenile stage in any death assemblage. However, even the study of adult individuals is fraught with 

methodological complications, which should be taken into account when making inferences regarding the 

relationship between stature and life conditions. Specifically, skeletal remains from archaeological contexts 

are often too fragmentary and incomplete to allow estimating stature using anatomical methods, that is, 

techniques that estimate living stature as the sum of all its skeletal components and corrective factors for 

soft tissues (Fully, 1956; Raxter et al., 2006). Instead, most stature estimates are obtained by applying 

regression formulae based on the relationship between long bones and stature in reference populations. 

These formulae are easy to use with incomplete remains, but can be quite inaccurate when the body 

proportions of the reference population and the population being examined differ (Vercellotti et al., 2009 

and references therein). Clearly, the use of inadequate regression methods can produce unreliable 

estimates and any inferences based on them would inevitably be equally unreliable. To address these 

issues, in recent years there have been notable advancements aimed at improving accuracy in estimating 



stature from skeletal remains (Raxter et al., 2006, 2007; Auerbach and Ruff, 2010; Petersen, 2011; Ruff et 

al., 2012; Niskanen et al., 2013). 

Conversely, limited theoretical efforts have been made to re-examine the conceptual contributions of 

stature analyses to reconstructing the human past. In particular, is there evidence for “paradox” in stature 

variation in the past and, if so, how does this affect our interpretation of skeletal growth outcomes? 

Specifically, does stature of archaeological populations provide evidence for selective mortality, which may 

then confound the interpretation of life conditions during growth and development? More importantly, 

even though the selective model proposed by Wood and colleagues (1992) is certainly possible, it is not 

clear whether it is probable, at least when stature is concerned. This is an issue that remains largely 

unanswered (Saunders and Hoppa, 1993). 

The incorporation of concepts, hypotheses, and methods of allied social and natural sciences in 

bioarchaeology has promoted significant advances in the study of past life conditions (Larsen, 2006). 

Further integration and multidisciplinarity is not only desirable, but required to advance our understanding 

and interpretation of the human experience in the past. However, interdisciplinarity in physical 

anthropology is hindered by several factors. First, in spite of common interests in the human condition, 

specific research agendas differ and tend to pull apart, rather than bring together, colleagues working in 

different specialties. As a consequence of different perspectives, even on the same topics, it often appears 

that research endeavors have little appeal or application to subdisciplines that did not generate them. For 

instance, even though human biologists commonly evaluate growth in terms of deviation from the mean 

(i.e., through z-scores), similar methods are seldom applied to past populations, hence limiting the 

possibility of carrying out meaningful comparisons between living and archaeological human groups. 

Second, different research interests, combined with progressive methodological specialization, lead to 

parallel bodies of knowledge that, while centered on common themes (e.g., growth), do not allow for direct 

data comparisons. Third, the nature of academic advancement and funding agencies tend to limit the scope 

of research projects to more manageable, narrowly focused endeavors. At least insofar as stature is 

concerned, we argue that an improved understanding of growth in the past can only be achieved by 

crossing the boundaries between bioarchaeology and human biology. There is much to be gained by 

collaborating with colleagues working with living populations and by collaboratively framing research 

questions that might be addressed in both living and archaeological populations. Such integration may 

allow us to overcome, at least conceptually, some difficulties limiting the study of skeletal populations, 

namely small sample sizes, poor preservation, and limited availability of contextual information. Because 

these issues do not equally vex human biological investigations, studies of living populations can provide 

useful insights and allow us to draw instructive parallels between present and past human biological 

variation. At the same time, a closer collaboration may also benefit human biologists by providing their 

research on living populations with a deeper temporal perspective, on a scale that is unlikely to be achieved 

even through multigenerational longitudinal studies. 

This study represents a first effort to bridge the divide between the study of past and present human 

populations by examining stature data in a broader biocultural context and drawing parallels between 

archaeological and living populations to explore the multidimensionality of stature variation in the past. 

Specifically, three research questions are addressed: 

   1. Is tall stature associated with low or high stress (inferred from skeletal indicators) in past populations? 

This question is explored by examining stature in two medieval populations, as well as between 

socioeconomic status groups in one medieval population. 

   2. What can we learn by applying human biology methods to the investigation of growth retardation in 

skeletal populations? How does growth retardation in archaeological populations compare to that 



observed in living groups? This question is addressed by comparing the observed prevalence of stunting in 

two bioarchaeological samples from Europe and three modern samples from South America. 

   3. Is the degree of variation in growth outcomes observed in the archaeological and living populations 

examined in this study the result of comparable selective pressures? Much of the theoretical framework 

concerning stature variation assumes that this trait is not selectively neutral. However, this assumption is 

rarely tested in practice, with the risk of reducing the study of growth to unfounded, adaptationist 

approaches. Therefore, we examine whether variation in growth outcomes provides evidence for selection 

by estimating FST, a measure of intergroup variation in quantitative traits that can be related to underlying 

genetic variation (Relethford and Blangero, 1990). 

 

MATERIALS AND METHODS 

Archaeological samples 

The Middle Ages are known as a time when European populations were exposed to a variety of biological 

and social stressors including: climate change, population growth, socioeconomic stratification, and 

complex population dynamics that favored warfare, mobility, interregional trade, and the spread of 

infectious disease (White, 1962; Dyer, 1994). Thus, the Middle Ages represent an ideal period for exploring 

the relationship between overall biological stress (as inferred from skeletal indicators) and stature. Two 

skeletal populations, one from Giecz, Poland, and the other from Trino Vercellese, Italy, were selected for 

this study based on completeness of the skeletons, wealth of archaeological data, and the existence of 

known socio-economic variation. 

Giecz 

The sample from Giecz, Poland, includes 66 (20 female; 46 male) adult skeletons aged 20 to 55 years 

(mean = 39.9; SD = 8.4) recovered at the medieval site Gz. 4 (Vercellotti et al., 2009). The settlement is 

located in the birthplace of the Polish state and has been the object of extensive archaeological 

investigations starting in the 1950s (Kostrzewski, 1952). Archaeological evidence of farming tools, scales, 

craft implements, and furnaces with associated metal slag suggests that the local population was mainly 

engaged in subsistence activities such as farming, smelting, handicraft, and trade (Koztrewski, 1964). 

Paleocarpological evidence attests to the cultivation of a variety of grains, in particular millet and, to a 

lesser extent, wheat, rye, and barley (Indycka, 2000). Extensive faunal remains document the presence of 

domestic animals and the abundance of fish scales and fishing implements suggests that aquatic resources 

were exploited as well. Paleodietary isotope analyses conducted by Reitsema et al. (2010) indicate that the 

medieval population inhabiting the settlement had a mainly terrestrial, omnivorous diet. The evidence of 

faunal remains at the site is consistent with regular meat consumption and the reliance on plants utilizing 

both C3 (wheat, rye) and C4 (millet) photosynthetic pathways is supported by archaeobotanical findings 

(Indycka, 2000). Additionally, Reitsema et al. (2010) identified sex-related differences in diet in the 

population from Giecz: male diets featured more meat and millet-based foods than female diets. The 

cemetery followed conventional Christian funerary practices in the deposition and orientation of the 

bodies; spatial distribution and burial typology tend to exclude the existence of social stratification at the 

cemetery site and it has been suggested that individuals of higher status were buried elsewhere 

(Koztrewski, 1964). Preliminary paleopathological examinations revealed high frequencies of environmental 

stress indicators such as cribra orbitalia, porotic hyperostosis, and linear enamel hypoplasia (LEH). Over 

80% of adults exhibited signs of porotic hyperostosis and 50% of sampled teeth were affected by LEH. This 

pattern suggests that the population was exposed to high levels of environmental stress during growth. No 

significant differences in the frequency of stress indicators were observed between males and females. 



Trino Vercellese 

The sample from Trino Vercellese, Italy includes a total of 52 adult individuals of high (6 female; 14 male) 

and low (14 female; 18 male) socioeconomic status (SES) excavated at the church of San Michele (for more 

details on status differences and sample composition, see Vercellotti et al., 2011). All individuals were 

between 20 and 60 years, and no significant differences (P = 0.354) in age distribution were detected 

between sex and status subsamples. Extensive archaeological studies carried out on the site indicate that 

the medieval settlement consisted of a fortified village, the economy of which was centered on farming and 

livestock breeding (Negro Ponzi Mancini, 1999). As the seat of local nobility and clergy, the settlement was 

also involved in active regional trade. Primary crops were represented by cereals (including wheat, rye, and 

millet), legumes, and aromatic plants (Negro Ponzi Mancini, 1999). Isotopic analyses revealed that the 

population had a mainly terrestrial diet, which included regular consumption of animal protein during 

childhood. Dietary quality differences between low status males and all other samples emerging after 

childhood were also observed (Reitsema and Vercellotti, 2012), suggesting the existence of cultural 

practices aimed at buffering children's diets. The population experienced relatively favorable life conditions 

without major growth disruptions (Negro Ponzi Mancini, 1999). The prevalence of most stress indicators 

was found in low frequency; LEH, however, affected all segments of the population, albeit with notable 

variation by sex and socioeconomic status. Specifically, LEH affected between 31.1% (males) and 41.3% 

(females) of high SES individuals and more than half (males: 58.0%; females: 52.0%) of low SES skeletons 

(see Table 1). LEH frequencies show significant differences between high and low SES groups (sexes 

combined P < 0.01; males P = 0.0001; females P = 0.002). 

 

Table 1. Frequencies of skeletal stress indicators and average stature for males and females from 

Giecz and Trino Vercellese 

Males 

    Giecz Trino (all) Trino (high SES) Trino (low SES) 

 

CO (%)   25.4 0.0 0.0 0.0 

PH (%)   91.8 0.0 0.0 0.0 

LEH (%)   48.3 48.9 31.1 58.0 

Stature (cm) 
S.D. 

172.47.1 167.35.6 171.14.2 164.44.9 

Females 

    Giecz Trino (all) Trino (high SES) Trino (low SES) 

CO (%)   44.4 0.0 0.0 0.0 

PH (%)   87.1 0.0 0.0 0.0 

LEH (%)   51.9 48.8 41.3 52.0 

Stature (cm) 
S.D. 

157.24.5 152.55.0 154.22.6 151.75.6 

 

The frequency of stress indicators in Giecz was determined from unpublished data collected by HM 

Justus and AM Agnew as part of the Global History of Health Project. The incidence of stress 

indicators in Trino Vercellese was derived from data published in Negro Ponzi Mancini, 1999. 

Analyses are limited to adults of known sex for whom a given trait could be scored. CO = cribra 

orbitalia; PH = porotic hyperostosis; LEH = linear enamel hypoplasia. 

http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0050


 

Comparative living samples 

 

The comparative living samples for this study—Ribeirinhos, Makushi, and Cali from South America—were 

chosen because they experience relatively high levels of stress, conceptually more similar to those 

experienced by past populations than those found in modern industrialized countries. Additionally, the 

samples are from the same broad geographic region of South America and, while likely exposed to similar 

overall ecogeographic environmental factors, they differ in regard to cultural practices, settlement type, 

and subsistence strategies. These characteristics of the comparative samples allow interpreting patterns of 

variation in growth outcomes in relation to a variety of biocultural factors. The same anthropometric 

variables and similarly extensive biocultural information were available for all samples examined. 

Descriptive statistics for stature in the living comparative samples are reported in Table 2. 

 

Table 2. Descriptive statistics for stature in the comparative living samples 

  
  Males Females 

  All Stunted Non-stunted All Stunted Non-stunted 

 

Ribeirinhos 
 

160.4 153.6 164.6 146.5 143.1 150.9 

  S.D. 7.1 5.3 4.1 5.5 4.6 3.0 

  N 84 32 52 88 50 38 

Makushi 
 

160 156.2 163.9 149.3 144.5 151.9 

  S.D. 5.5 4.7 3 4.6 3 2.9 

  N 126 63 63 406 145 261 

Cali low SES 
 

      152.9 145.2 155 

  S.D. – – – 6 2.5 4.9 

  N       517 110 407 

Cali mid-low SES 
 

      153.1 144.9 155.1 

  S.D. – – – 5.9 2.9 4.5 

  N       592 118 474 

Cali high SES 
 

      158.4 145.9 158.9 

  S.D. – – – 5.6 1.9 5.1 

  N       458 17 441 

 

 

All measurements are reported in centimeters. 

 

 



Ribeirinhos 

The Ribeirinho (“Amazon river people”) sample is represented by 172 (88 female; 84 male) adults 

between 18 and 77 years of age (Vercellotti and Piperata, 2012) inhabiting upper-land communities 

located in and around the Caxiuanã National Forest in the Brazilian state of Pará (Piperata, 2007). 

At the time of data collection, the communities were rural, had no electricity or running water, and 

only a few households had pit toilets. The majority of households used the forest and river for waste 

disposal. Water for cooking and drinking was collected from the river or, in a few cases, from hand-

dug wells, and trash was burned, buried, or dumped in the river. All the people practiced slash and 

burn agriculture. Bitter manioc (Manihot esculenta) served as the dietary staple, providing 50% of 

all energy and 70% of the carbohydrates in the diet (Piperata et al., 2011). Fish and hunted game 

were the most important sources of dietary protein (42% and 19%, respectively). Açaí (Euterpe 

oleracea), a local palm fruit, was an important source of calories when in season (30%) (Piperata et 

al., 2011). In terms of dietary fats, the most important sources were the açaí fruit, purchased, 

processed soybean oil, and fish. While the people produced and collected the majority of their food, 

they were also actively involved in, and dependent upon, the regional market economy. In 2009, a 

survey carried out in 73 households (greater than 1/3 of households in the region) revealed high 

levels of perceived food insecurity (Piperata et al., 2013). Mothers' perceptions of insufficient food 

were supported by detailed dietary data collected at the household-level (n  = 51), which 

demonstrated that, on average, households only met 75% of their total energy needs. Household-

level protein consumption, however, exceeded needs (154%). Data collected on the individual-level 

were similar. Among women and children, energy intakes proved insufficient (63% and 77%, 

respectively) to meet needs but protein intakes came close to meeting or exceeded individual 

requirements (94% and 183%, respectively). No differences in energy or protein adequacy between 

boys and girls were detected (Piperata et al., 2013). 

Access to medical care was limited due to the remote location of the communities, and trips to town 

for care were limited to emergency situations. Respiratory infections, gastrointestinal problems, 

skin related issues, and general aches and pains related to heavy labor and/or arthritis were the most 

common causes of morbidity. Overall, Ribeirinhos are subject to chronic stress, which has been 

associated with nutritional stress during growth and development and poor access to healthcare 

(Silva and Crews, 2006). 

Makushi 

The Makushi sample is composed of 532 (126 male; 406 female) Makushi Amerindians inhabiting 

11 communities in the North Rupununi region of interior British Guyana (Wilson et al., 2011). All 

individuals were between 19 and 82 years. The Makushi lived in villages located on the savannahs 

and maintained farms in nearby forests. Houses were built with wattle-and-daub or clay bricks and 

had thatched roofs (Forte, 1996). High infant (93/1000 live births) and child (169/1000) mortality 

suggests that living conditions during the early growth period are challenging (Wilson et al., 2006). 

Subsistence practices were relatively autarkic, and consisted of slash-and-burn agriculture used to 

cultivate high-cyanide varieties of manioc. Compared to other societies, the Makushi had low 

dietary diversity (Nagel et al., 2014), an indication of an inadequate diet (Kant, 1996; Hatløy et al., 

1998). An examination of nutrient intake in diets of Makushi children and women in two of the 11 

villages, showed that major energy sources were represented by manioc (47%), cereals/grains 

(12%), nuts (11%), (fish 9%), fruits and vegetables (8%), sugar (7%) and, to a lesser extent, meat 

and dairy products (5%) (Palmer, 2009). Fish was the major source (49%) of protein in the diet, 

followed by nuts (12%), domestic meat (11%), cereal and grains (10%), and manioc (7%). Overall, 

the children's annual median percent of daily recommended intake of calories was 91.1%, while it 

was 99.2% for proteins, 30.8% for fats, and 126.9% for carbohydrates. Additionally, Palmer (2009) 

http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0082
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0057
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0058
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0058
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0059
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0059
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0073
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0087
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0018
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0089
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0049
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0028
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0025
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0053
http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22552/full#ajpa22552-bib-0053


observed that children's intake of certain micronutrients, such as zinc, iron and vitamin A, in these 

communities was low in relation to recommended intake. Although detailed data collection over a 

relatively long period of time is required to develop accurate estimates of micronutrient intake, 

micronutrient intake among Makushi children was interpreted to be inadequate to the point of being 

potentially harmful to growth and immunocompetence (Wilson et al., 2011). Women's diets were 

on average similar to those of the children, but included a greater proportion of manioc and less 

fruit and vegetables. Drinking water was drawn from rivers, streams and wells and rarely boiled 

(Wilson et al., 2006). Water sources were frequently contaminated by organic pollutants and 

diarrhea and parasitic infestations were widespread (Wilson et al., 2011). Additionally, malaria and 

dengue fever were endemic in the villages located along rivers. Even though all villages had access 

to a health post and a community health worker trained in diagnosing and treating common 

ailments, the health posts were often without supplies. 

Cali 

The Cali comparative sample includes 1568 women (age range: 18–44 years) living in Cali, 

Colombia (Dufour et al., 1994). These women were assigned to three SES groups (Low = 517; Mid-

Low = 592; High = 458) based on barrio (neighborhood) of residence (Dufour et al., 1994). Rapid 

urbanization in the 1960s and 1970s led to concentric growth around the city center, accompanied 

by an increase in social stratification and inequality. At the time of data collection, low SES barrios 

were peripherally located, had unpaved streets, lacked access to public transportation, and some 

housing was precarious in nature. Indeed, some houses were either under construction or built with 

temporary, recycled materials. Many homes lacked access to water, electricity, telephone lines, and 

sewage and waste disposal services. However, in several cases the residents of the barrios had 

devised “unofficial” connections to water and electric sources (Dufour, 1994). Mid-low SES barrios 

were typically older settlements with some paved streets and access to public transportation. Houses 

in these neighborhoods were typically made of bricks or cement blocks and had water, electricity, 

and sewerage connections through the city; few homes had telephone access (Dufour et al., 1994, 

1997). In contrast, high SES barrios were characterized by private homes or condominiums, 

benefitted from all city services including phones, and had access to city parks and green zones 

(Dufour et al., 1994). Striking differences among SES groups were also evident in terms of 

education and employment (Dufour et al., 1994), which resulted in variation in levels of food 

security with the lowest SES group being the most food insecure (Dufour et al., 1997). 

In fact, while food availability and intake among high SES women was not restricted and likely 

more than adequate to meet their energetic needs, access to food among poorer groups was 

inconsistent and limited by financial circumstances (Dufour et al., 1997). Among Low and Mid-

Low SES women included in this study, protein accounted for 11.6%, carbohydrate 70.1%, and fat 

18.3% of total energy intake. Primary energy sources were white rice (23.0%), sugared beverages 

(14.3%), white bread (7.5%), beans (6.7%), beef (6.1%), and plantains (4.4%) (for detailed dietary 

information see Dufour et al., 1997). 

Even though detailed information on migration in the region is not available, it is possible that a 

portion of the poorest segment of the population (Low SES) may have consisted of recent migrants, 

who arrived in Cali as adults. Most migrants were originally from Tumaco, a city on the Pacific 

coast that was afflicted by an earthquake in 1979. The population in Tumaco was primarily Afro-

Colombian and the diets in that region are known to include more fish than is seen in the typical 

Cali diet. The staple carbohydrate in Tumaco was rice, which is similar to the rest of the country. 

Other migrants originated from rural areas in the central Magdalena River valley and the llanos, 

which they left to escape the violence in their home regions. Diets in these rural regions were likely 

not significantly different than those of the non-migrant urban poor (Swanberg and Shipley, 1975). 
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The mid-low and high SES samples did not include many, if any, migrants. Overall, the presence of 

migrants in the poorest segments of Cali's population is unlikely to have had a major impact on the 

representativeness of the Low SES sample. 

Access to healthcare was available to the majority of the population through government-sponsored 

health posts located in the barrios, even though high SES individuals could take advantage of the 

services provided by private clinics. In general, Cali's inhabitants suffered from a variety of 

gastrointestinal and respiratory ailments, which were found to be more severe among the poorer 

segments of the population (Koopman, 1978; Wilson et al., 1999). Specifically, Koopman (1978) 

reported prevalence rates among low SES school age children for diarrheal disease (18.9%), 

vomiting (14.3%), colds (50.6%), and head lice infestations (39.1%). Both diarrhea and vomiting 

were associated with unhygienic conditions in the schools and, to a lesser extent, crowding. In a 

study of parasitic burden among boys living in Cali and surrounding rural communities, Wilson and 

colleagues (1999) reported that 63% were affected by at least one species of gastrointestinal 

parasite. Significant differences were observed between SES groups in terms of overall infection 

prevalence (high SES: 54%; low SES: 68%; P < 0.001) and prevalence of polyparasitic infections 

(high SES: 19%; low SES: 34%; P  < 0.001). These results are consistent with previous 

investigations carried out in Cali, which revealed the persistence of parasitic infestations into 

adulthood (Faust, 1958; Faust and Giraldo, 1960). No differences were observed between Low SES 

boys from urban and rural environments (Wilson et al., 1999). Even though the majority (80–95%) 

of infected boys had light parasite loads, Wilson and coworkers (1999) detected significant 

associations between parasite infections and reduced growth outcomes. 

Methods 

For the skeletal populations, sex and age-at-death of all individuals included in the study were 

estimated using standard osteological methods (Buikstra and Ubelaker, 1994). 

In this study, only anatomical stature estimates were employed. To this end, all elements 

contributing to living stature (cranial height, vertebral heights between C2-S1, bicondylar femur 

length, tibia condylo-malleolar length and the height of talus and calcaneus in articulation) were 

measured according to the method devised by Fully (1956) and modified by Raxter and colleagues 

(2006, 2007). Skeletal height was calculated as the sum of all elements above and living stature 

estimates calculated from skeletal height (Raxter et al., 2007). 

Frequencies of skeletal stress indicators (cribra orbitalia, porotic hyperostosis, LEH) in medieval 

Giecz and Trino Vercellese were obtained from the literature or calculated from data provided by 

the curators of the collections (Table 1). These stress indicators are commonly employed by 

bioarchaeologists to assess past populations' stress levels during growth and development. Cribra 

orbitalia and porotic hyperostosis are porotic lesions of the orbital vault and outer cranial table 

considered to be indicators of anemic conditions of diverse etiologies suffered during childhood and 

adolescence (Walker et al., 2009). Linear enamel hypoplasias are linear grooves observed in the 

crown of teeth that suffered from interruptions in the formation of dental enamel (amelogenesis) 

(Goodman and Rose, 1990). Even though these indicators do not provide detailed information on 

the nature and severity of stress episodes at the individual level, they are suggestive of the overall 

stress levels experienced by the group during the earlier years of life. In general, the use of multiple 

indicators allows inferring different aspects of early life conditions of past populations (Goodman 

and Martin, 2002). In our analyses, the frequencies of these skeletal stress indicators were used to 

determine differences in overall stress during development in the two populations examined for the 

purposes of comparing anthropometric data between more or less stressed groups. 
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On the living populations, anthropometric measures included: total stature and sitting height 

measured to the nearest 0.1 cm following standard methods (Lohman et al., 1988). Subischial leg 

length was calculated as stature minus sitting height. 

Data analysis 

The existence of significant differences in stature between the bioarchaeological samples was tested 

using the Mann–Whitney or Kruskal–Wallis tests. Because males and females exhibit sexual 

dimorphism in stature, all comparisons were limited to same-sex samples. 

The comparison of growth outcomes between bioarchaeological and living populations was 

achieved through the calculation of z-scores and the identification of individuals exhibiting growth 

retardation. The calculation and evaluation of height-for-age z-scores (HAZ) is common practice in 

human biology, as it allows the detection of adverse long-term consequences of stress during early 

life. Growth retardation, also referred to as stunting, was defined as a z-score falling below −2 

(WHO, 1995), which characterizes individuals whose growth is outside the normal range of 

variation. Individual HAZ scores were calculated using the National Health and Nutrition 

Examination Surveys (NHANES III) reference values provided in Frisancho (2008). 

To test whether growth outcomes in the groups examined were suggestive of selective pressures, we 

examined the degree of regional (Medieval Europe, Northern South America) variation in growth 

outcomes through the estimation of Wright's FST statistic from quantitative traits using the 

Relethford and Blangero (1990) method. In its canonical definition, FST is a measure of genetic 

variance calculated as the ratio between intergroup variation and total variation expected under 

conditions of panmixia. Adopting an equal and additive effect model of polygenic inheritance and 

assuming total heritability, the Relethford–Blangero method allows for the calculation of a 

minimum estimate of FST from the phenotypic variance–covariance matrix. The statistic reflects the 

relative apportionment of variance at different hierarchical levels and ranges between 0% (no 

variation) and 100% (complete variation). This is due to the fact that selective processes tend to 

reduce a trait's heterozygosity and consequently constrain phenotypic variance in populations 

exposed to specific pressures. Selectively neutral traits, such as cranial morphology and blood 

polymorphisms, typically show a much greater degree of variation at the local level (i.e., regional, 

within population) than at a larger scale, with values of FST around 85% (Relethford, 2002). In 

contrast, traits subjected to high selective pressures such as skin color, show an opposite pattern 

characterized by limited variability (9%) at a local scale (Relethford, 2002). The Relethford–

Blangero model has been employed to explore the relative degree of selection of different 

quantitative traits, including craniometrics (Relethford, 1994), pelvic geometric morphometrics 

(Betti et al., 2013), and long bone lengths (Kudaka et al., 2013). In this study, the Relethford–

Blangero method was applied to skeletal segment lengths (skeletal trunk height, femur, tibia) for 

archaeological populations, and to stature, sitting height, and leg length for living populations. 

Because actual heritability estimates were not available for all groups examined and population 

differences in stature heritability may exist (Luke et al., 2001), a conservative approach to 

estimating FST was adopted, and complete heritability and equal census size were assumed in the 

analyses. If growth outcomes are indeed subject to selective pressures, then it is expected that the 

apportionment of variance at the regional level will be relatively modest and similar to that 

observed for highly selected traits. Statistical analyses were performed using SPSS 19.0, and 

Microsoft Excel 2007. Statistical significance was defined as P ≤ 0.05. 

RESULTS 

Stress indicators and stature 
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Skeletal stress indicators suggested that individuals from different sites, as well as individuals of 

different socioeconomic status, were subject to different levels of stress. Overall, the individuals 

from Giecz represented the most stressed group, followed by low SES individuals from Trino 

Vercellese. Consistent with expectations, the high SES group from Trino Vercellese exhibited the 

lowest frequencies of skeletal stress indicators (Table 1). 

The analysis of stature in the two bioarchaeological populations revealed a mixed pattern: tall 

stature appeared to be associated with both greater and lower stress levels. Indeed, individuals from 

Giecz exhibited the greatest average stature (males  = 172.4 cm, SD = 7.1; females   

= 157.2 cm; SD = 4.5) and the greatest prevalence of stress indicators (90% of adults had porotic 

hyperostosis; 51% had LEH). Individuals from Trino Vercellese (SES groups combined) exhibited 

overall shorter stature (males  = 167.3 cm, SD = 5.6; females   = 152.5 cm, SD = 5.0) and 

lower prevalence of stress indicators (no porotic hyperostosis, 50% LEH). The difference in the 

stature distributions between Giecz and Trino males (status subsamples combined) was significant 

(P = 0.003). When comparisons were carried out on social status subsamples, no significant 

differences were found between males from Giecz and high status Trino males (P = 0.801), while 

significant differences were found between Giecz males and low status Trino males (P  ≤ 0.001). 

Similar results were found in the female subsamples, where stature distributions were significantly 

different between Giecz females and all females from Trino (P = 0.015), as well as Giecz females 

and low status Trino females (P = 0.011). No differences (P  = 0.921), however, were detected 

between Giecz females and high status Trino females. Interestingly, within the Trino population, 

significant (P  = 0.001) differences in stature and LEH were found between high and low status 

males; no differences were found between female subsamples for stature, but there were differences 

in LEH (P = 0.002). In this case, greater stature was associated with lower stress (Table 3). 

 

Table 3. P values for comparisons of stature 

Comparison Males Females 

1. Highlighted P values are significant at the 0.05 level. 

Giecz vs. Trino all 0.003 0.015 

Giecz vs. Trino high SES 0.801 0.921 

Giecz vs. Trino low SES 0.001 0.011 

Trino high SES vs. Trino low SES 0.001 0.326 

Growth retardation 

Stunting prevalence and average HAZ for the archaeological and living samples are reported in 

Table 4 and Figure 1. These results revealed the presence of very few stunted individuals in the 

bioarchaeological populations. Only 4% of males and no females from Giecz were classified as 

stunted; average HAZ values were only slightly negative (males: −0.38; females: −0.62). In Trino 

Vercellese, differences between SES groups were striking: no high status individuals were 

classified as stunted, while 23% of low status individuals had z-scores falling below −2. Clear 

differences in average HAZ were also visible across SES groups: high status individuals had 

average scores (males: −0.52; females: −1.00) that were less negative than those observed among 

low status individuals (males: −1.40; females: −1.39). Neither prevalence of stunting nor average z-
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scores differed significantly between low status males and females, while high status males had 

average HAZ scores that were lower than their female counterparts. 

Table 4. Prevalence of stunting and average HAZ by sex and socioeconomic status 

Sample 
Percent stunted Average Z-score 

Males Females Males Females 

Giecz 4 0 −0.38 −0.62 

Trino Vercellese, low SES 22 23 −1.40 −1.39 

Trino Vercellese, high SES 0 0 −0.52 −1.00 

Ribeirinhos 38 57 −1.88 −2.17 

Makushi 50 36 −1.97 −1.73 

Cali low SES – 21 – −1.24 

Cali mid-low SES – 20 – −1.21 

Cali high SES – 4 – −0.44 

 

Figure 1. Distribution of height-for-age z-scores (HAZ) in archaeological and living samples 

(F = female; M = male). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.] 
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Figure 1. Distribution of height-for-age z-scores (HAZ) in archaeological and living samples 

(F = female; M = male). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.] 

The overall prevalence of stunting among Ribeirinhos was 48% and the mean HAZ for the 

combined sex sample was −2.03. The mean HAZ in the male and female sub-samples were −1.88 

and −2.17, respectively. A significantly higher rate (χ2 = 5.31; P  = 0.02) of stunting was detected in 

females (57%) compared to males (38%). Among the Makushi, 39% of the sample were stunted. 

Sex differences were evident, with males exhibiting higher rates of stunting than females (males: 

50%; females: 36%; χ2 = 7.65; P  = 0.006). However, average z-scores did not differ significantly 

between the sexes (males: −1.97; females: −1.73). Overall, the rate of stunting in the Cali 

population was 16%, but there were clear differences in the prevalence of stunting between SES 

subsamples. Among the High SES group the rate of stunting was only 4% while it was 20 and 21% 

in the mid-low and low SES samples. Average HAZ scores were −0.44 for the High SES sample, 

−1.21 for the mid-low SES sample, and −1.24 for the Low SES group. 

Apportionment of variance at the regional level 

The minimum estimate of FST at the regional level for the medieval populations (distinguishing 

status subsamples) was 6.3%, while the minimum estimate for the living samples was 20.9%. As 

expected, these values suggested that the variables examined were not selectively neutral, and in 

fact subject to notable selective pressures. 
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DISCUSSION 

Stature and stress in two medieval populations 

Interpopulation comparisons 

The relationship between stature and stress indicators in the two bioarchaeological populations 

highlights that the interpretation of early life conditions based on stature alone should be advanced 

with caution. Indeed, the population characterized by greater frequencies of stress indicators (Giecz) 

is also the one exhibiting taller stature in both the male and female subsamples. These results are 

contrary to expectations based on the generally held association between stress and stature. This 

finding does not imply that stress has no impact on terminal growth outcomes, but rather points to 

the fact that the stature of the surviving group might be skewed due to high selective pressures that 

eliminated short-statured individuals. In support of this interpretation, Agnew and colleagues (2007) 

found evidence for early high mortality of short-statured individuals in this population. In 

examining the relationship between dental development and long bone length, they observed that in 

terms of height-for-age, the Giecz subadults consistently fell below the modern reference standard 

10th percentile. In the adults, a strong, significant positive correlation existed between age and 

stature in both males (r = 0.929; P < 0.000) and females (r = 0.837; P < 0.000). This result is 

consistent with results obtained from large bioarchaeological samples (Kemkes-Grottenthaler, 

2005) and supports the notion that short stature may be reflective of systemic functional 

compromises related to poor environmental conditions experienced during growth and 

development. Based on this evidence, tall stature in Giecz would in fact be a “paradox,” indicative 

of high selection rather than positive life conditions. However, this interpretation alone does not 

explain all of the evidence. In particular, it is important to point out that the environment must have 

been able to support the survivor group's catch-up growth that led, in the end, to tall adult stature. It 

is generally held that catch-up growth can only occur if environmental quality improves (Golden, 

1994). Assuming that early stressors would not affect older individuals due to either immunological 

or cultural buffers, it is conceivable that survivors in Giecz experienced catch-up growth if provided 

adequate nutrition. Isotopic data for Giecz (Reitsema et al., 2010) suggest the consumption of 

abundant animal protein at least during adulthood. Even though isotopic data on subadults' diets in 

Giecz are not available, if the same amount of animal source food were made available to children 

or adolescents then they would have been able to experience catch-up growth following earlier 

growth retardation. 

Interestingly, while significant differences in stature were found between the two archaeological 

populations, such differences were mainly due to the inclusion of low status individuals from Trino 

Vercellese in the analyses. This result was unexpected, because the differences in stress indicators 

between high SES Trino males and Giecz males were the most pronounced. It would thus appear 

that tall stature might be at the same time the result of favorable life conditions (low selection) and 

greater environmental stress (high selection). As a consequence, it can be argued that stature alone 

is not a reliable indicator of environmental conditions during growth, at least when catch-up growth 

might play a role in determining terminal growth outcomes. An instructive example of how terminal 

stature may not reflect stress levels is provided by the work of Steckel (1987). Steckel (1987) used 

nutritional data and historical records to explain the anomalous growth patterns of American slaves, 

who were characterized by extremely short stature during childhood and almost average stature in 

adulthood. Had the analysis been limited to adults, positive nutritional status throughout 

development could mistakenly be inferred. These results point to the importance of complementing 

the interpretation of stature with information on the biocultural context of a population. Stature may 

not be a good indicator of positive or negative environmental quality per se, but may be used to 

improve the understanding of specific conditions and life histories of individuals and populations. 
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In this regard, whenever possible it is instructive to examine stature variation between subsamples 

of a population, which—in spite of many possible socioeconomic differences—have many 

ecological and cultural factors in common. 

Intrapopulation comparisons 

In Trino Vercellese, when social status was taken into consideration, stress indicators and stature 

were in agreement. High status was associated with lower LEH and taller stature among males; no 

stature differences were found among females, but significant differences in LEH suggest that low 

status females experienced worse environmental conditions. The lack of stature differences between 

the female subsamples may therefore be attributed to a number of other factors, including small 

sample size or biological buffering. For example, Reitsema and Vercellotti (2012) examined life 

history changes in diet in the population and observed that childhood diets did not vary significantly 

by sex and status, suggesting that children's dietary intakes may have been buffered, that is, adults 

made conscious efforts to ensure that children would have adequate nutrition. In contrast, the 

isotopic data indicated status differences in diet among adults. Low-status adult males differed 

considerably from women and high-status males in that they consumed diets with more millet and 

less meat, a difference that developed after childhood. Overall, when the evidence from Trino 

Vercellese is considered in its entirety, it appears that under environmental conditions of relatively 

low stress, selective mortality may not have been as important. In support of this interpretation, no 

significant association was found between age at death and stature in any of the sex and status 

subsamples, suggesting that even shorter individuals did not necessarily suffer from functional 

impairment as a result of poorer early life conditions. 

It should be noted that differences in stress indicators were taken into consideration at the aggregate 

level, which were employed simply to define overall stress levels during development. No analyses 

on associations between individual stature and stress indicators were carried out, as not all variables 

were equally available for each individual. Based on available information, it is unclear whether any 

significant associations of this kind would be found. For instance, Temple (2008—and see also 

references therein) did not find any association between LEH episodes and stature, suggesting that 

the acute stress episodes leading to hypoplastic defects might not have had an impact on adult 

stature, possibly due to the confounding effects of catch-up growth on terminal growth outcomes. 

Growth retardation in bioarchaeological and living populations 

The contextual examination of growth retardation in both bioarchaeological and living groups 

provides an opportunity to draw useful parallels between past and present groups' variation, and to 

incorporate biocultural information in the interpretation of the patterns observed. 

Sex-related differences 

Our analyses showed clear differences and similarities in the pattern of growth retardation exhibited 

by different groups in relation to sex and socioeconomic status. The Amazonian groups exhibited 

significant differences in the prevalence of stunting between the sexes: fewer Ribeirinho males were 

stunted than their female peers, while the opposite pattern was found among the Makushi. These 

findings may be explained in terms of cultural norms and practices in these two populations. 

Indeed, even though the Ribeirinhos did not explicitly favor their sons over their daughters, customs 

related to food allocation, mobility, and sexual behaviors during adolescence tended to limit catch-

up growth opportunities for females (Vercellotti and Piperata, 2012). Conversely, the Makushi 

traditionally practice matrilocal, cross-cousin unions, which places higher social value on female 

offspring (Wilson et al., 2011). It is therefore conceivable that girls were accorded preferential 
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treatment and benefited more from improved conditions than their male siblings, ultimately 

lowering the number of stunted females in the population. In this regard, it is interesting to note 

that, while differences did not reach significance, Nagel et al. (2014) did observe greater dietary 

diversity among Makushi girls than boys during infancy and early childhood in the same 

communities examined in this study. It is possible that such sex-related differences were more 

pronounced when the individuals included in the study were growing up, at a time when the 

Makushi inhabiting the North Rupununi region experienced greater isolation (Baines, 2005). In 

contrast to what was observed among the living groups, sex differences in stunting were not 

detected in the bioarchaeological samples. This finding may suggest more egalitarian child-raising 

practices in these communities. While sex-related dietary differences have been detected among 

adult individuals from Giecz (Reitsema et al., 2010), skeletal and isotopic data may suggest that 

boys and girls experienced similar dietary conditions. Nonetheless, because of the limited number 

of stunted individuals in Giecz, it is impossible to exclude the existence of significant sex-related 

differences in growth retardation. However, the low prevalence of stunting in this sample is, in 

itself, noteworthy. The almost absolute absence of stunted individuals in Giecz, combined with 

contextual information indicative of high stress levels, suggests that growth retardation in this group 

might have been so severe as to be lethal for most stunted individuals, or that catch-up growth 

opportunities, possibly supported by improved post-childhood conditions, were common. 

Skeletal growth outcomes would suggest that such catch-up growth opportunities were available to 

both males and females, even though lower female HAZ values may indicate that reproductive costs 

might have limited the extent of catch-up growth among women, which would be similar to 

observations made among Ribeirinhos (Vercellotti and Piperata, 2012). A similarly egalitarian 

pattern in the prevalence of stunting was also detected in the population from Trino Vercellese. 

Even though status-related differences existed, no differences were detected between the sexes. 

Nonetheless, it should be noted that high status males had the highest HAZ in this population, 

suggesting that they might have benefited from better life conditions during growth. This notion is 

consistent with expectations for stratified patriarchal societies and is supported by analyses of body 

proportions suggesting differential opportunities for catch-up growth during adolescence 

(Vercellotti et al., 2011). 

Status-related differences 

The incorporation of stratified groups in this study provides insights on the effects of differential 

access to resources on skeletal growth outcomes in past and present societies. In Trino Vercellese, 

no high SES individuals of either sex were stunted, while about 23% of low SES males and females 

were. The fact that this group experienced less severe levels of chronic stress (as suggested by lack 

of anemic and metabolic bone diseases), combined with stature data, suggests that while some 

segments of the population may have experienced suboptimal conditions, they might not have been 

so severe as to be lethal. Additionally, analyses of dietary life histories in all segments of this 

population indicate that people enacted practices to improve the perceived quality of children's and 

women's diet, regardless of their status (Reitsema and Vercellotti, 2012). In this regard, it is 

interesting to observe a parallel between Trino Vercellese and Cali. Dufour and colleagues (1997) 

demonstrated that low SES women in Cali adopted a variety of coping strategies to reduce the 

negative impacts of household food insecurity. While such strategies did not completely buffer 

individuals from low energy intakes on a daily basis, they appear, over the long-term, to have 

allowed women to meet their energy needs. One example is where women's intakes exceeded their 

needs in times of plenty (feast) and then were reduced when availability was low (fast) (Dufour et 

al., 1997). A similar pattern of consumption, characterized by alternate states of “feasting and 

fasting,” was noted in the European medieval populace (Montanari, 1994). Similar rates of stunting 

among low SES groups in both populations (∼20%) may attest to similar stressors during 
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childhood. In a way, the conditions of poor sanitation, crowding, and precarious access to food 

experienced by individuals living in the low SES barrios in Cali were likely similar to those that 

characterized the conditions experienced by medieval peasants, even though lower HAZ values in 

Trino may indicate somewhat higher levels of stress in that group. In stark contrast, a clear buffer of 

high SES individuals' growth is evident in both Trino and Cali, in agreement with preferential 

access to resources by more affluent groups. 

Setting-related differences 

The striking intergroup differences in growth retardation observed in this study highlight the 

importance of setting-specific conditions in determining terminal growth outcomes. By 

complementing growth data with contextual information, it is possible to highlight some major 

differences between the settings examined here. 

The prevalence of stunting in Trino Vercellese and Cali departs from the very high levels of 

stunting observed among rural Amazonians (Ribeirinhos, Makushi), suggesting overall better access 

to resources in agglomerated settings. For example, in terms of dietary energy, Cali women, despite 

their low SES, had adequate intakes (Dufour et al., 1997). Furthermore, isotopic data for Trino 

Vercellese and dietary information for Cali indicate consistent access to high-quality, animal-source 

protein. In addition to being high-quality sources of protein, these foods also provide other key 

nutrients important for growth and development such as vitamin A, vitamin B12, folate, iron, and 

iodine (Black et al., 2008). The importance of animal-source foods in children's diets is supported 

by the strong association between their consumption and statural growth in several rural groups in 

developing countries (Allen et al., 1992; Marquis et al., 1997; Leonard et al., 2000). In contrast, the 

diets of the rural Amazonian groups appear less suited to meet growing children's nutritional 

demands. In terms of energy, Piperata and colleagues (2013) observed that only 12% of Ribeirinho 

households were able to meet or exceed their daily energy needs. Individual-level data on 

Amazonian women and children also revealed inadequate energy intakes (63% and 77%, 

respectively). Access to high-quality protein (fish, game meat) in these Ribeirinho communities 

was, however, sufficient. At the household-level, protein availability exceeded need (154%). 

Children's daily protein intakes also well exceeded their needs (183%). Mothers' intakes, while less 

adequate, came close to meeting their daily protein needs (94%). The dietary data indicate that the 

high rate of stunting in these Ribeirinho communities is likely due to chronically inadequate energy 

intakes and a diet that is both bulky (high fiber) and low in fat. Piperata (2007) has argued that the 

bulky nature of farinha (toasted manioc meal) may lead to children feeling satiated before 

consuming enough food to meet their energy and micronutrient needs. In addition, lack of access to 

medical care often meant that chronic, low-grade infections and parasitic burdens went untreated 

which, due to the energetic costs of immune activation, may be further undermining growth in these 

rural communities. Similarly, Wilson and coworkers (2011) noted that Makushi children's diets did 

not meet nutritional requirements for fat and several important micronutrients, due primarily to the 

consumption of low-energy-density foods. Even though mothers in both rural communities enact 

feeding practices aimed at buffering child food intake (Wilson et al., 2011; Piperata et al., 2013), 

growth outcomes suggest that mild-to-moderate malnutrition may be more prevalent in these 

settings than in Trino Vercellese and Cali. 

Based on the evidence reviewed in this study, the life conditions experienced in medieval Giecz 

appear very different from those of all other groups examined. In particular, even though isotopic 

data (Reitsema et al., 2010) indicate that animal-source foods were regularly consumed by adults in 

Giecz, it is not known to what extent and/or at what time in life such foods were introduced into 

children's diets. The high prevalence of cribra orbitalia and porotic hyperostosis in this sample 

suggests that during growth the majority of the population suffered from anemia or other metabolic 
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disorders caused by micronutrient deficiencies (Walker et al., 2009). In a way, the much higher 

rates of stunting observed among the other groups suggest that while stressors exist and may be 

important, selective pressures on these populations may be more relaxed than those experienced in 

medieval Giecz. Alternatively, medieval populations might have had greater opportunities for 

catch-up growth than the living groups examined. In this regard, comparisons of body proportions 

in these populations (Vercellotti, 2012) suggest that lower levels of stunting observed among 

medieval groups may be related to different stressors experienced throughout life, selective 

mortality, and differential opportunities for catch-up growth. For instance, it is possible that 

infectious disease epidemics, well documented as a major cause of mortality during the Middle 

Ages, were a predominant cause of growth retardation in the past, while chronic malnutrition may 

be the primary growth limiting factor in modern populations. Clearly such a dichotomous 

distinction between stressors in unlikely, but it serves this discussion well. 

Even though both disease and malnutrition may have similar (and additive) effects on the growing 

body, it is possible to imagine important differences in their long-term effects on growth. First, 

infectious diseases may be contracted in spite of overall good nutrition. Second, infectious diseases 

(with the exception of parasitic infestations) tend to be acute episodic stressors with an impact on 

survival rather than long-term growth outcomes (obviously multiple acute episodes could have 

effects similar to those of prolonged chronic stress). Third, infectious diseases are probabilistically 

more likely to affect the growing body in earlier phases of life, when the immune system is still 

immature and naïve. Therefore, provided that an individual can survive earlier disease episodes, as 

he/she grows his/her likelihood of contracting the same diseases decreases. Consequently, if other 

environmental conditions, nutrition in particular, are favorable, upon surviving diseases individuals 

may experience catch-up growth. The net result of this is that the most susceptible individuals die 

off and do not grow up to become stunted individuals. 

In contrast, moderate malnutrition has the tendency to be a chronic stressor that exerts its action on 

the growing body for a prolonged time. The causes of malnutrition may be multiple and may 

involve not only dietary nutrient restriction, but also parasitic infestations. Except for the most 

extreme cases, malnutrition is not lethal, but can also compromise growth to a varied extent (Chen 

et al., 1980; Wachs, 1995; Black et al., 2008). Additionally, unless its causes are eliminated, which 

is rarely the case, malnutrition is a long-term stressor experienced throughout the entire period of 

growth. Under these circumstances, individuals may not die or experience catch-up growth and thus 

grow up to be stunted adults. Obviously, infectious disease and malnutrition are likely to co-occur 

to various extents in most human populations, but their relative prevalence may lead to specific 

interactions between the growing body and the environment, hence altering growth patterns in 

predictable ways. It is possible that the importance of infectious disease and malnutrition varies in 

relation to ecological and climatic factors, as expected based on different ecosystems' productivity 

and infectious diseases ecogeographic distribution (see Tanner, this issue). 

Apportionment of variance at the regional level 

The FST values among archaeological and living populations highlight a fairly limited degree of 

variation at the regional level, in agreement with expectations for traits subject to selective 

pressures (Relethford, 2002). These results are consistent with the findings reported by Kudaka and 

colleagues (2013), who observed a relatively high degree of interregional measures of variance of 

long bone lengths in Asian populations. It should be noted that the estimates of FST provided herein 

are conservative and reflect the minimum amount of regional variation observed. Using lower 

estimates of heritability would have produced larger estimates of regional variation. Nonetheless, as 

noted by Relethford (2002), even though different heritability values would affect the estimates of 

the single components of variance, the pattern of variation is the same regardless of the heritability 
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estimates used. It is interesting to note that the analyses revealed greater phenotypic variance among 

living groups than in the archaeological samples. Combined with the paleopathological data and 

contextual information, this finding suggests that the medieval populations examined here might 

have been exposed to relatively higher selective pressures—and possibly greater selective 

mortality—than groups from modern developing countries. However, this result may be due to 

other factors. For instance, it is possible that greater variance in the living samples may be due to 

greater differences in settlement type, subsistence practices, and access to healthcare. Alternatively, 

differences may be due to the fact that the variables used in the analyses are analogous but not 

identical, due to the presence of soft tissues in the measurements of living individuals. Additionally, 

even though there is no evidence pointing to preservation bias in the bioarchaeological populations 

examined, it is conceivably possible that the skeletal samples examined may not be representative 

of the entire survivor groups at these sites. 

CONCLUSIONS 

This study represents a first attempt at crossing boundaries between present and past human biology 

by comparing stature variation in living and archaeological populations. The observations and 

parallels drawn in this study underline the multidimensionality of human growth retardation and 

warn from uniformitarian assumptions about life conditions even in similar time periods or 

geographical areas. Understanding the specific eco-socio-biocultural factors that mold a 

population's specific environment is essential to attempt reconstructing life conditions in the past. 

Unfortunately, rich contextual information is not always available for archaeological populations; in 

its absence it may not be possible to reach definite conclusions. Two complementary research 

strategies may allow bioarchaeologists to transcend such limitations: a greater commitment to first-

hand acquisition of contextual information through archaeological excavation, and increased 

interdisciplinarity and collaboration with colleagues working in different areas of human biology. 

Regardless of the options adopted, researchers should be mindful that the interpretation of stature in 

the past is complex. To be meaningful, it requires an understanding of the specific environmental 

conditions experienced by a population, the examination of stress indicators and diet, the analysis of 

growth and its retardation in both survivors and non-survivors, and the incorporation of biocultural 

information, whenever possible. Future studies should explore the impact of different stressors 

(chronic vs. acute; malnutrition vs. infectious diseases) on human growth to develop a more 

comprehensive model of biological variation in response to specific environmental conditions. In 

bioarchaeology, researchers should address stress and growth at the individual level, in order to test 

the association between stress and stature data, keeping in mind that catch-up growth may confound 

the evidence. 
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