10 research outputs found

    HCV Defective Genomes Promote Persistent Infection by Modulating the Viral Life Cycle

    Get PDF
    Defective interfering (DI) RNAs have been detected in several human viruses. HCV in-frame deletions mutants (IFDMs), missing mainly the envelope proteins, have been found in patient sera and liver tissues. IFDMs replicate independently and can be trans-packaged into infectious virions in the presence of full length viral genome. So far, their biological role is unclear. In this study, we have isolated and cloned IFDMs from sera samples and liver tissues of patients infected with HCV genotypes 1b, 2a, and 3a. IFDMs were present in up to 26% of samples tested. Using the in vitro HCV cell culture system, co-expression of the wild type (wt) HCV replicon with HCV IFDMs RNA resulted in increased HCV replication. Additionally, co-transfection of the HCV full length genome RNA and a defective mutant missing the envelope region led to increased viral release, collectively suggesting an important biological role for IFDMs in the virus life cycle. Recently, exosomes, masters of intercellular communication, have been implicated in the transport of HCV viral genomes. We report for the first time that exosomal RNA isolated from HCV sera samples contains HCV defective genomes. We also demonstrate that inhibition of exosomal biogenesis and release influences HCV viral replication. Overall, we provide evidence that the presence of HCV IFDMs affects both viral replication and release. IFDMs exploit exosomes as means of transport, a way to evade the immune system, to spread more efficiently and possibly maintain persistent infection

    ): 24-30 ISSN 1948-5182 (online)

    Get PDF
    Abstract AIM: To assess the role of the major risk factors for hepatocellular carcinoma (HCC) development in the western part of North Africa. METHODS: A multicenter case control study was conducted in Tunisia, Morocco and Algeria in collaboration with Pasteur Institutes in these countries. A total of 164 patients with HCC and 250 control subjects without hepatic diseases were included. Prevalences of HBsAg, anti-hepatitis C virus (HCV) and diabetes were assessed. HCV and HBV genotyping were performed for anti-HCV and HBsAg positive patients. RESULTS: The mean age of patients was 62 ± 10 years old for a 1.5 M:F sex ratio. Sixty percent of HCC patients were positive for anti-HCV and 17.9% for HBsAg. Diabetes was detected in 18% of cases. Odd ratio (OR) and 95% confidence intervals (CI) were 32.0 (15.8 -65.0), 7.2 (3.2 -16.1) and 8.0 (3.1 -20.0) for anti-HCV, HBsAg and diabetes respectively. Multivariate analysis indicated that the three studied factors were independent. 1b HCV genotype and D HBV genotype were predominant in HCC patients. HCV was the only risk factor significantly associated with an excess of cirrhosis (90% vs 68% for all other risk factors collectively, P = 0.00168). Excessive alcohol consumption was reliably established for 19 (17.6%) cases among the 108 HCC patients for whom data is available. CONCLUSION: HCV and HBV infections and diabetes are the main determinants of HCC development in North Africa. An active surveillance and secondary prevention programs for patients with chronic hepatitis and nutrition-associated metabolic liver diseases are the most important steps to reduce the risk of HCC in the region

    Common properties of the nuclear body protein SP100 and the TIF1alpha chromatin factor: the role of SUMO modification

    No full text
    This work was supported by grants from the European Community, the Association for International Cancer Research, and the Association pour la Recherche sur le Cancer.The SP100 protein, together with PML, represents a major constituent of the PML-SP100 nuclear bodies (NBs). The function of these ubiquitous subnuclear structures, whose integrity is compromised in pathological situations such as acute promyelocytic leukemia (APL) or DNA virus infection, remains poorly understood. There is little evidence for the occurrence of actual physiological processes within NBs. The two NE proteins PML and SP100 are covalently modified by the ubiquitin-related SUMO-1 modifier, and recent work indicates that this modification is critical for the regulation of NE dynamics. In exploring the functional relationships between NBs and chromatin, we have shown previously that SP100 interacts with members of the HP1 family of nonhistone chromosomal proteins and that a variant SP100 cDNA encodes a high-mobility group (HMG1/2) protein. Here we report the isolation of a further cDNA, encoding the SP100C protein, that contains the PHD-bromodomain motif characteristic of chromatin proteins. We further show that TIF1 alpha, a chromatin-associated factor with homology to both PML and SP100C, is also modified by SUMO-1. Finally, in vitro experiments indicate that SUMO modification of SP100 enhances the stability of SP100-HP1 complexes. Taken together, our results suggest an association of SP100 and its variants with the chromatin compartment and, further, indicate that SUMO modification may play a regulatory role in the functional interplay between the nuclear bodies and chromatin.Publisher PDFPeer reviewe

    A Peculiar Mutation Spectrum Emerging from Young Peruvian Patients with Hepatocellular Carcinoma

    Get PDF
    International audienceHepatocellular carcinoma usually afflicts individuals in their later years following longstanding liver disease. In Peru, hepatocellular carcinoma exists in a unique clinical presentation, which affects patients around age 25 with a normal, healthy liver. In order to deepen our understanding of the molecular processes ongoing in Peruvian liver tumors, mutation spectrum analysis was carried out on hepatocellular carcinomas from 80 Peruvian patients. Sequencing analysis focused on nine genes typically altered during liver carcinogenesis, i.e. ARID2, AXIN1, BRAF, CTNNB1, NFE2L2, H/K/N-RAS, and TP53. We also assessed the transcription level of factors involved in the control of the alpha-fetoprotein expression and the Hippo signaling pathway that controls contact inhibition in metazoans. The mutation spectrum of Peruvian patients was unique with a major class of alterations represented by Insertions/Deletions. There were no changes at hepatocellular carcinoma-associated mutation hotspots in more than half of the specimens analyzed. Furthermore, our findings support the theory of a consistent collapse in the Hippo axis, as well as an expression of the stemness factor NANOG in high alpha-fetoprotein-expressing hepatocellular carcinomas. These results confirm the specificity of Peruvian hepatocellular carcinoma at the molecular genetic level. The present study emphasizes the necessity to widen cancer research to include historically neglected patients from South America, and mor

    Early-onset liver cancer in South America associates with low hepatitis B virus DNA burden

    No full text
    International audienceIn Peru, hepatocellular carcinoma (HCC) arises in young non-cirrhotic patients. Hepatitis B virus (HBV) is suspected to be the prominent etiological agent. We thus performed a comprehensive molecular study of HBV infection in 65 Peruvian HCC patients. Only 51% were considered as persistently infected at the onset. HBV DNA was found by PCR in the tumor and/or matched non-tumor liver tissues in more than 80% of cases (n = 53/65). HBV DNA was significantly more abundant in livers of younger patients than in those of the older ones. We consistently observed low viral DNA burden (0.1–6.5 copies for 100 cells), with viral genomes in younger patients displaying higher proportion of mutations at di-pyrimidines (TpT and CpC, P = 0.006). A drastic activation of multiple DNA repair pathways in tumors of younger patients was observed. Our observations clearly challenge the current vision that associates high HBV DNA load with earlier tumor development. We concluded that in Peru, and maybe in other populations with Americas' indigenous ancestry, HBV-associated liver tumorigenesis might differ significantly from that generally observed in the rest of the world. Procedures used to screen for HCC development in subjects at risk should be adapted to the local situation

    HCV Defective Genomes Promote Persistent Infection by Modulating the Viral Life Cycle

    No full text
    Defective interfering (DI) RNAs have been detected in several human viruses. HCV in-frame deletions mutants (IFDMs), missing mainly the envelope proteins, have been found in patient sera and liver tissues. IFDMs replicate independently and can be trans-packaged into infectious virions in the presence of full length viral genome. So far, their biological role is unclear. In this study, we have isolated and cloned IFDMs from sera samples and liver tissues of patients infected with HCV genotypes 1b, 2a, and 3a. IFDMs were present in up to 26% of samples tested. Using the in vitro HCV cell culture system, co-expression of the wild type (wt) HCV replicon with HCV IFDMs RNA resulted in increased HCV replication. Additionally, co-transfection of the HCV full length genome RNA and a defective mutant missing the envelope region led to increased viral release, collectively suggesting an important biological role for IFDMs in the virus life cycle. Recently, exosomes, masters of intercellular communication, have been implicated in the transport of HCV viral genomes. We report for the first time that exosomal RNA isolated from HCV sera samples contains HCV defective genomes. We also demonstrate that inhibition of exosomal biogenesis and release influences HCV viral replication. Overall, we provide evidence that the presence of HCV IFDMs affects both viral replication and release. IFDMs exploit exosomes as means of transport, a way to evade the immune system, to spread more efficiently and possibly maintain persistent infection

    Hotspot activating PRKD1 somatic mutations in polymorphous low-grad adenocarcinomas of the salivary glands

    No full text
    © 2014 Nature America, Inc. All rights reserved.Polymorphous low-grade adenocarcinoma (PLGA) is the second most frequent type of malignant tumor of the minor salivary glands. We identified PRKD1 hotspot mutations encoding p.Glu710Asp in 72.9% of PLGAs but not in other salivary gland tumors. Functional studies demonstrated that this kinase-activating alteration likely constitutes a driver of PLGA.This work was supported in part by an IDEAS grant from Princess Margaret Hospital, the Head and Neck Translational Research Program (I.W., B.A.C., P.C.B. and J.D.M.), the Ontario Institute for Cancer Research and the government of Ontario (P.C.B. and J.D.M.) and by a Terry Fox Research Institute New Investigator Award (P.C.B.). C.H. and F.-F.L. acknowledge support from the Wharton family, Joe's Team, Gordon Tozer, the Campbell Family Institute for Cancer Research and the Ministry of Health and Long-Term Planning, Canada.info:eu-repo/semantics/publishedVersio
    corecore