24 research outputs found
Traveling waves in mode superposition
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 53).Offshore marine risers are subject to Vortex Induced Vibrations (VIV) because of ocean currents. Response prediction techniques which accurately estimate the strain due to VIV are of help in deciding how to mitigate VIV, and also to predict the life of the structure. Experiments conducted in the Gulf Stream provided data about the way long flexible cylinders respond at high mode numbers. The data from these experiments showed that the response of long flexible cylinders is often in the form of traveling waves. Therefore, it was necessary to develop an excitation force model which has traveling wave characteristics. This idea has been implemented earlier using a Green's function approach. This work presents the idea of using mode superposition along with an excitation force model which has traveling wave characteristics. Examples of the implementation of this method are shown. Also, examples where a combination of standing and traveling wave excitation models are used is shown, and these agree well with the experimental data.by Aditi Sheshadri.S.M
Seasonal Variability of the Polar Stratospheric Vortex in an Idealized AGCM with Varying Tropospheric Wave Forcing
The seasonal variability of the polar stratospheric vortex is studied in a simplified AGCM driven by specified equilibrium temperature distributions. Seasonal variations in equilibrium temperature are imposed in the stratosphere only, enabling the study of stratosphere–troposphere coupling on seasonal time scales, without the complication of an internal tropospheric seasonal cycle. The model is forced with different shapes and amplitudes of simple bottom topography, resulting in a range of stratospheric climates. The effect of these different kinds of topography on the seasonal variability of the strength of the polar vortex, the average timing and variability in timing of the final breakup of the vortex (final warming events), the conditions of occurrence and frequency of midwinter warming events, and the impact of the stratospheric seasonal cycle on the troposphere are explored. The inclusion of wavenumber-1 and wavenumber-2 topographies results in very different stratospheric seasonal variability. Hemispheric differences in stratospheric seasonal variability are recovered in the model with appropriate choices of wave-2 topography. In the model experiment with a realistic Northern Hemisphere–like frequency of midwinter warming events, the distribution of the intervals between these events suggests that the model has no year-to-year memory. When forced with wave-1 topography, the gross features of seasonal variability are similar to those forced with wave-2 topography, but the dependence on forcing magnitude is weaker. Further, the frequency of major warming events has a nonmonotonic dependence on forcing magnitude and never reaches the frequency observed in the Northern Hemisphere.United States. National Aeronautics and Space Administration (Grant NNX13AF80G
Can the Delay in Antarctic Polar Vortex Breakup Explain Recent Trends in Surface Westerlies?
The authors test the hypothesis that recent observed trends in surface westerlies in the Southern Hemisphere are directly consequent on observed trends in the timing of stratospheric final warming events. The analysis begins by verifying that final warming events have an impact on tropospheric circulation in a simplified GCM driven by specified equilibrium temperature distributions. Seasonal variations are imposed in the stratosphere only. The model produces qualitatively realistic final warming events whose influence extends down to the surface, much like what has been reported in observational analyses. The authors then go on to study observed trends in surface westerlies composited with respect to the date of final warming events. If the considered hypothesis were correct, these trends would appear to be much weaker when composited with respect to the date of the final warming events. The authors find that this is not the case, and accordingly they conclude that the observed surface changes cannot be attributed simply to this shift toward later final warming events
An Experimental Evaluation of Vortex-Induced Vibration of a Riser Bundle With Gaps
VIV model test results are presented for a bundle of three parallel pipes all lying in the same plane, similar to a riser with large kill and choke lines. The rigid model was attached to a spring-mounted frame in the MIT towing tank. The horizontal model was towed in the tank and allowed to respond in free vibration to vortex-induced vibration in the cross-flow direction. The angle of attack of the model was varied from 0 to 90 degrees. The model was tested with and without helical strakes. Without strakes the model exhibited significant vibration at 0 and 90 degrees angle of attack. Strakes suppressed VIV at all angles of attack
The Relationship between Age of Air and the Diabatic Circulation of the Stratosphere
The strength of the Brewer–Dobson circulation is difficult to estimate using observations. Trends in the age of stratospheric air, deduced from observations of transient tracers, have been used to identify trends in the circulation, but there are ambiguities in the relationship between age and the strength of the circulation. This paper presents a steady-state theory and a time-dependent extension to relate age of air directly to the diabatic circulation of the stratosphere. In steady state, it is the difference between the age of upwelling and downwelling air through an isentrope and not the absolute value of age that is a measure of the strength of the diabatic circulation through that isentrope. For the time-varying case, expressions for other terms that contribute to the age budget are derived. An idealized atmospheric general circulation model with and without a seasonal cycle is used to test the time-dependent theory and to find that these additional terms are small upon annual averaging. The steady-state theory holds as well for annual averages of a seasonally varying model as for a perpetual-solstice model. These results are a step toward using data to quantify the strength of the diabatic circulation.National Science Foundation (U.S.) (AGS-1547733
Data Imbalance, Uncertainty Quantification, and Generalization via Transfer Learning in Data-driven Parameterizations: Lessons from the Emulation of Gravity Wave Momentum Transport in WACCM
Neural networks (NNs) are increasingly used for data-driven subgrid-scale
parameterization in weather and climate models. While NNs are powerful tools
for learning complex nonlinear relationships from data, there are several
challenges in using them for parameterizations. Three of these challenges are
1) data imbalance related to learning rare (often large-amplitude) samples; 2)
uncertainty quantification (UQ) of the predictions to provide an accuracy
indicator; and 3) generalization to other climates, e.g., those with higher
radiative forcing. Here, we examine the performance of methods for addressing
these challenges using NN-based emulators of the Whole Atmosphere Community
Climate Model (WACCM) physics-based gravity wave (GW) parameterizations as the
test case. WACCM has complex, state-of-the-art parameterizations for
orography-, convection- and frontal-driven GWs. Convection- and
orography-driven GWs have significant data imbalance due to the absence of
convection or orography in many grid points. We address data imbalance using
resampling and/or weighted loss functions, enabling the successful emulation of
parameterizations for all three sources. We demonstrate that three UQ methods
(Bayesian NNs, variational auto-encoders, and dropouts) provide ensemble
spreads that correspond to accuracy during testing, offering criteria on when a
NN gives inaccurate predictions. Finally, we show that the accuracy of these
NNs decreases for a warmer climate (4XCO2). However, the generalization
accuracy is significantly improved by applying transfer learning, e.g.,
re-training only one layer using ~1% new data from the warmer climate. The
findings of this study offer insights for developing reliable and generalizable
data-driven parameterizations for various processes, including (but not
limited) to GWs
Data Imbalance, Uncertainty Quantification, and Transfer Learning in Data-Driven Parameterizations: Lessons From the Emulation of Gravity Wave Momentum Transport in WACCM
Neural networks (NNs) are increasingly used for data-driven subgrid-scale parameterizations in weather and climate models. While NNs are powerful tools for learning complex non-linear relationships from data, there are several challenges in using them for parameterizations. Three of these challenges are (a) data imbalance related to learning rare, often large-amplitude, samples; (b) uncertainty quantification (UQ) of the predictions to provide an accuracy indicator; and (c) generalization to other climates, for example, those with different radiative forcings. Here, we examine the performance of methods for addressing these challenges using NN-based emulators of the Whole Atmosphere Community Climate Model (WACCM) physics-based gravity wave (GW) parameterizations as a test case. WACCM has complex, state-of-the-art parameterizations for orography-, convection-, and front-driven GWs. Convection- and orography-driven GWs have significant data imbalance due to the absence of convection or orography in most grid points. We address data imbalance using resampling and/or weighted loss functions, enabling the successful emulation of parameterizations for all three sources. We demonstrate that three UQ methods (Bayesian NNs, variational auto-encoders, and dropouts) provide ensemble spreads that correspond to accuracy during testing, offering criteria for identifying when an NN gives inaccurate predictions. Finally, we show that the accuracy of these NNs decreases for a warmer climate (4 × CO2). However, their performance is significantly improved by applying transfer learning, for example, re-training only one layer using ∼1% new data from the warmer climate. The findings of this study offer insights for developing reliable and generalizable data-driven parameterizations for various processes, including (but not limited to) GWs
A perspective on climate model hierarchies
To understand Earth's climate, climate modelers employ a hierarchy of climate models spanning a wide spectrum of complexity and comprehensiveness. This essay, inspired by the World Climate Research Programme's recent “Model Hierarchies Workshop,” attempts to survey and synthesize some of the current thinking on climate model hierarchies, especially as presented at the workshop. We give a few formal descriptions of the hierarchy and survey the various ways it is used to generate, test, and confirm hypotheses. We also discuss some of the pitfalls of contemporary climate modeling, and how the “elegance” advocated for by Held (2005) has (and has not) been used to address them. We conclude with a survey of current activity in hierarchical modeling, and offer suggestions for its continued fruitful development
Variability of the stratospheric polar vortex and its impact on surface climate patterns
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, June 2015.Cataloged from PDF version of thesis. "June 2015."Includes bibliographical references (pages 133-145).This thesis investigates various aspects of the variability of the stratospheric polar vortex and the effect of this variability on tropospheric weather and climate patterns on various timescales. In the first part of this work, an improved idealized model was developed to study the coupled stratosphere-troposphere system. The model is forced by relaxation to a specified equilibrium temperature profile, which varies seasonally only in the stratosphere. This model setup permits the investigation of stratosphere-troposphere interactions on seasonal timescales, without the complication of an internal tropospheric seasonal cycle. The model is forced with different shapes and amplitudes of simple bottom topography, resulting in a range of stratospheric climates. The effect of these different kinds of topography on the seasonal variability of the strength of the polar vortex, the average timing and variability in timing of the final breakup of the vortex (final warming events), the conditions of occurrence and frequency of midwinter warming events, and the impact of the stratospheric seasonal cycle on the troposphere are explored. The inclusion of wavenumber 1 and wavenumber 2 topographies results in very different stratospheric seasonal variability. Hemispheric differences in stratospheric seasonal variability are recovered in the model with appropriate choices of wave-2 topography. In the model experiment with a realistic Northern Hemisphere-like frequency of midwinter warming events, the distribution of the intervals between these events suggest that the model has no year to year memory. When forced with wave-1 topography, the gross features of seasonal variability are similar to those forced with wave-2 topography, but the dependence on forcing magnitude is weaker. Further, the frequency of major warming events has a non-monotonic dependence on forcing magnitude, and never reaches the frequency observed in the northern hemisphere. In the second part of the thesis, the impact of stratospheric ozone depletion on the Antarctic polar vortex and its subsequent influences on southern hemisphere surface climate patterns is investigated. It is verified that stratospheric final warming events have an impact on tropospheric circulation in a simplified GCM with seasonal variations in the stratosphere only. The model produces qualitatively realistic final warming events whose influence extends down to the surface, much like what has been reported in observational analyses. The hypothesis that recent observed trends in surface westerlies in the Southern Hemisphere are directly consequent on observed trends in the timing of stratospheric final warming events is tested. It is confirmed that there is a statistically significant shift towards later final warming events in the years with large ozone depletion. However it is found that the observed trends in surface westerlies cannot be attributed simply to this shift towards later final warming events. Finally, responses of the idealized AGCM to polar stratospheric cooling that mimics the radiative effects of stratospheric ozone depletion are studied. It is found that there are two factors that play a role in setting the magnitude and persistence of the model's surface response to cooling: the seasonal cycle of tropospheric annular mode timescales, and whether or not the imposed cooling leads to the presence of stratospheric westerlies at a time when easterlies were prevalent in the control run. That is, the surface response is sensitive to the timing of the imposed polar stratospheric cooling.by Aditi Sheshadri.Ph. D