10 research outputs found

    Macrophages are a source of extracellular adenosine deaminase-2 during inflammatory responses

    No full text
    Serum activity of the adenosine deaminase (ADA) isozyme, ADA2, has been reported to be elevated during various disease states. Macrophages have been suggested as the cellular source of extracellular ADA activity because they are one of the only cell types in which intracellular ADA2 activity has been measured, but extracellular secretion has never been demonstrated. Rat primary peritoneal macrophages (PPMs) and peripheral blood monocytes (PBMs) were harvested and incubated for 18 h in RPMI supplemented with horse serum. PPM and PBM lysates were assayed for intracellular ADA activity (ammonia production). In vitro and in vivo extracellular ADA activities were measured in media and rat serum, respectively. Activity of ADA1 was confirmed by selective inhibition with erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA). ADA2 activity was inhibited by 2′-deoxycoformcin only, and was increased at a low pH (6·5). Activity of both ADA isozymes was found in PPMs and PBMs, and their media. In a separate group of rats, peritonitis was induced by ip insertion of 400 mg/kg caecal slurry. PPMs were harvested 24 h later and incubated for 18 h. In PPMs from rats with peritonitis both isozymes were elevated by a similar proportion. In contrast, media from these PPMs had a lower ADA1 and a higher ADA2 activity compared to PPMs from nonseptic rats. This resulted in a greater proportion of ADA2 in media. The isozyme proportions in serum from septic rats more closely resembled that of the PPM media. The response of PBM was small relative to that of PPM. These results suggest that macrophages are a significant source of extracellular ADA isozymes, the activity of which increases during an inflammatory response. Because extracellular isozymes profiles differ from cellular concentrations, the data also suggest differential release of each isozyme from PPMs

    Anti-inflammatory effect of a novel locally acting A2A receptor agonist in a rat model of oxazolone-induced colitis.

    Get PDF
    Adenosine represents a powerful modulating factor, which has been shown to orchestrate the scope, duration, and remission of the inflammatory response through the activation of four specific receptors, classified as A1, A2A, A2B, and A3, all being widely expressed in a variety of immune cells. Several selective A2A receptor agonists have displayed anti-inflammatory effects, through the suppression of IL-12, TNF, and IFN-γ production by monocytes and lymphocytes, in the setting of chronic intestinal inflammation. However, the therapeutic application of A2A receptor agonists remains hindered by the risk of serious cardiovascular adverse effects arising from the wide systemic distribution of A2A receptors. The present study focused on evaluating the anti-inflammatory effects of the novel poorly absorbed A2A receptor agonist PSB-0777 in a rat model of oxazolone-induced colitis as well as to evaluate its cardiovascular adverse effects, paying particular attention to the onset of hypotension, one of the main adverse effects associated with the systemic pharmacological activation of A2A receptors. Colitis was associated with decreased body weight, an enhanced microscopic damage score and increased levels of colonic myeloperoxidase (MPO). PSB-0777, but not dexamethasone, improved body weight. PSB-0777 and dexamethasone ameliorated microscopic indexes of inflammation and reduced MPO levels. The beneficial effects of PSB-0777 on inflammatory parameters were prevented by the pharmacological blockade of A2A receptors. No adverse cardiovascular events were observed upon PSB-0777 administration. The novel A2A receptor agonist PSB-0777 could represent the base for the development of innovative pharmacological entities able to act in an event-specific and site-specific manner

    Adenosine deaminase inhibition

    No full text
    corecore