2,461 research outputs found

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Escherichia coli induces apoptosis and proliferation of mammary cells

    Get PDF
    Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection, The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1 beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection, Induction of matrix metalloproteinase-g, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue, These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    Systems Analysis Unfolds the Relationship between the Phosphoketolase Pathway and Growth in Aspergillus nidulans

    Get PDF
    Background: Aspergillus nidulans is an important model organism for studies on fundamental eukaryotic cell biology and on industrial processes due to its close relation to A. niger and A. oryzae. Here we identified the gene coding for a novel metabolic pathway in A. nidulans, namely the phosphoketolase pathway, and investigated the role of an increased phosphoketolase activity. Methodology/Principal Findings: Over-expression of the phosphoketolase gene (phk) improved the specific growth rate on xylose, glycerol and ethanol. Transcriptome analysis showed that a total of 1,222 genes were significantly affected by overexpression of the phk, while more than half of the affected genes were carbon source specific. During growth on glucose medium, the transcriptome analysis showed that the response to phk over-expression is targeted to neutralize the effect of the over-expression by regulating the acetate metabolism and initiate a growth dampening response. Conclusions/Significance: Metabolic flux analysis using 13C-labelled glucose, showed that over-expression of phosphoketolase added flexibility to the central metabolism. Our findings further suggests that A. nidulans is not optimized for growth on xylose, glycerol or ethanol as the sole carbon sources. © 2008 Panagiotou et al.published_or_final_versio

    D-brane potentials in the warped resolved conifold and natural inflation

    Get PDF
    In this paper we obtain a model of Natural Inflation from string theory with a Planckian decay constant. We investigate D-brane dynamics in the background of the warped resolved conifold (WRC) throat approximation of Type IIB string compactifications on Calabi-Yau manifolds. When we glue the throat to a compact bulk Calabi-Yau, we generate a D-brane potential which is a solution to the Laplace equation on the resolved conifold. We can exactly solve this equation, including dependence on the angular coordinates. The solutions are valid down to the tip of the resolved conifold, which is not the case for the more commonly used deformed conifold. This allows us to exploit the effect of the warping, which is strongest at the tip. We inflate near the tip using an angular coordinate of a D5-brane in the WRC which has a discrete shift symmetry, and feels a cosine potential, giving us a model of Natural Inflation, from which it is possible to get a Planckian decay constant whilst maintaining control over the backreaction. This is because the decay constant for a wrapped brane contains powers of the warp factor, and so can be made large, while the wrapping parameter can be kept small enough so that backreaction is under control.Comment: 41 pages, 3 appendices, 1 figure, PDFLaTex; various clarifications added along with a new appendix on b-axions and wrapped D5 branes;version matches the one published in JHE

    Probing scalar effective field theories with the soft limits of scattering amplitudes

    Get PDF
    We investigate the soft behaviour of scalar effective field theories (EFTs) when there is a number of distinct derivative power counting parameters, ρ1 < ρ2 < . . . < ρQ. We clarify the notion of an enhanced soft limit and use these to extend the scope of onshell recursion techniques for scalar EFTs. As an example, we perform a detailed study of theories with two power counting parameters, ρ1 = 1 and ρ2 = 2, that include the shift symmetric generalised galileons. We demonstrate that the minimally enhanced soft limit uniquely picks out the Dirac-Born-Infeld (DBI) symmetry, including DBI galileons. For the exceptional soft limit we uniquely pick out the special galileon within the class of theories under investigation. We study the DBI galileon amplitudes more closely, verifying the validity of the recursion techniques in generating the six point amplitude, and explicitly demonstrating the invariance of all amplitudes under DBI galileon duality
    corecore