7,907 research outputs found

    Partonic effects on higher-order anisotropic flows in relativistic heavy-ion collisions

    Full text link
    Higher-order anisotropic flows v4v_{4} and v6v_{6} in heavy ion collisions at the Relativistic Heavy Ion Collider are studied in a multiphase transport model that has previously been used successfully for describing the elliptic flow v2v_2 in these collisions. We find that the same parton scattering cross section of about 10 \textrm{mb} used in explaining the measured v2v_2 can also reproduce the recent data on v4v_{4} and v6v_{6} from Au + Au collisions at s=200\sqrt{s}=200 \textrm{AGeV}. It is further found that the % v_{4} is a more sensitive probe of the initial partonic dynamics in these collisions than v2v_{2}. Moreover, higher-order parton anisotropic flows are nonnegligible and satisfy the scaling relation vn,q(pT)∼v2,qn/2(pT)v_{n,q}(p_{T})\sim v_{2,q}^{n/2}(p_{T}), which leads naturally to the observed similar scaling relation among hadron anisotropic flows when the coalescence model is used to describe hadron production from the partonic matter.Comment: 5 pages, 3 figures, version to appear in PRC as a Rapid Communicatio

    Rank one and mixing differentiable flows

    Full text link
    We construct, over some minimal translations of the two torus, special flows under a differentiable ceiling function that combine the properties of mixing and rank one

    Single Electron Elliptic Flow Measurements in Au+Au Collisions from STAR

    Full text link
    Recent measurements of elliptic flow (v_2) and the nuclear modification factor (R_{CP}) of strange mesons and baryons in the intermediate p_T domain in Au+Au collisions demonstrate a scaling with the number of constituent-quarks. This suggests hadron production via quark coalescence from a thermalized parton system. Measuring the elliptic flow of charmed hadrons, which are believed to originate rather from fragmentation than from coalescence processes, might therefore change our view of hadron production in heavy ion collisions. While direct v_2 measurements of charmed hadrons are currently not available, single electron v_2 at sufficiently high transverse momenta can serve as a substitute. At transverse momenta above 2 GeV/c, the production of single electrons from non-photonic sources is expected to be dominated by the decay of charmed hadrons. Simulations show a strong correlation between the flow of the charmed hadrons and the flow of their decay electrons for p_T > 2 GeV/c. We will present preliminary STAR results from our single electron v_2 measurements from Au+Au collisions at RHIC energies.Comment: 10 pages, 7 figures Proceedings of the Hot Quarks 2004 Conference, July 18-24 2004, Taos Valley, New Mexico, USA to be published in Journal of Physics

    System size dependence of elliptic flows in relativistic heavy-ion collisions

    Get PDF
    The elliptic flows in both Cu+Cu and Au+Au collisions at the Relativistic Heavy Ion Collider are studied in a multi-phase transport model. For both collisions at same reduced impact parameter and minimum bias collisions, the elliptic flow of partons in Cu+Cu collisions is about a factor of three smaller than that in Au+Au collisions at same energy. The reduction factor is similar to the ratio of the sizes of the two colliding systems and is also related to the combined effects of initial energy density and spatial elliptic deformation in the two reactions. A similar system size dependence is also seen in the elliptic flow of charged hadrons from minimum bias collisions.Comment: 5 pages, 5 figures, revised version, to appear in PL

    Pseudorapidity dependence of anisotropic flows in relativistic heavy-ion collisions

    Get PDF
    The pseudorapidity dependence of anisotropic flows v1v_{1}, v2v_{2}, v3v_{3} , and v4v_{4} of charged hadrons in heavy-ion collisions at the Relativistic Heavy Ion Collider is studied in a multi-phase transport model. We find that while the string melting scenario, in which hadrons that are expected to be formed from initial strings are converted to their valence quarks and antiquarks, can explain the measured pTp_{T}-dependence of v2v_{2} and v4 v_{4} of charged hadrons at midrapidity with a parton scattering cross section of about 10 \textrm{mb}, the scenario without string melting reproduces better the recent data on v1v_{1} and v2v_{2} of charged hadrons at large pseudorapidity in Au + Au collisions at s=200\sqrt{s}=200 AGeV . Our results thus suggest that a partonic matter is formed during early stage of relativistic heavy ion collisions only around midrapidity and that strings remain dominant at large rapidities. The pTp_{T}-dependence of v1v_{1} , v2v_{2}, v3v_{3} and v4v_{4} for charged hadrons at forward pseudorapidity is also predicted, and we find that while v1v_{1} and v2v_{2} are appreciable at large pseudorapidity the higher-order anisotropic flows v3v_{3} and v4v_{4} are essentially zero.Comment: 5 pages, 4 figures, revised version, to appear in PL

    ψ(3770)\psi(3770) and BB meson exclusive decay B→ψ(3770)KB \to \psi(3770) K in QCD factorization

    Full text link
    Belle has observed surprisingly copious production of ψ(3770)\psi(3770) in BB meson decay B→ψ(3770)KB\to \psi(3770)K, of which the rate is comparable to that of B→ψ(3686)KB\to \psi(3686)K. We study this puzzling process in the QCD factorization approach with the effect of S-D mixing considered. We find that the soft scattering effects in the spectator interactions play an essential role. With a proper parametrization for the higher twist soft end-point singularities associated with kaon, and with the S-D mixing angle θ=−12∘\theta=-12^{\circ}, the calculated decay rates can be close to the data. Implications of these soft spectator effects to other charmonium production in BB exclusive decays are also emphasized.Comment: journal versio
    • …
    corecore