research

Partonic effects on higher-order anisotropic flows in relativistic heavy-ion collisions

Abstract

Higher-order anisotropic flows v4v_{4} and v6v_{6} in heavy ion collisions at the Relativistic Heavy Ion Collider are studied in a multiphase transport model that has previously been used successfully for describing the elliptic flow v2v_2 in these collisions. We find that the same parton scattering cross section of about 10 \textrm{mb} used in explaining the measured v2v_2 can also reproduce the recent data on v4v_{4} and v6v_{6} from Au + Au collisions at s=200\sqrt{s}=200 \textrm{AGeV}. It is further found that the % v_{4} is a more sensitive probe of the initial partonic dynamics in these collisions than v2v_{2}. Moreover, higher-order parton anisotropic flows are nonnegligible and satisfy the scaling relation vn,q(pT)∼v2,qn/2(pT)v_{n,q}(p_{T})\sim v_{2,q}^{n/2}(p_{T}), which leads naturally to the observed similar scaling relation among hadron anisotropic flows when the coalescence model is used to describe hadron production from the partonic matter.Comment: 5 pages, 3 figures, version to appear in PRC as a Rapid Communicatio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020