304 research outputs found

    Filling gaps in seed germination and species selection: work in progress for dryland restoration in Argentina

    Get PDF
    Los practicantes de la restauración y rehabilitación ecológica (RRE) carecen de información completa sobre los tratamientos pregerminativos más efectivos para promover la germinación de plantas nativas de regiones áridas y semiáridas, y sobre la supervivencia y crecimiento de estas especies a campo. Aquí informamos resultados del enfoque “estrategias profesionales inteligentes” para evaluar la germinación de especies del Monte Austral, una región árida del sur de Argentina. Nuestros objetivos fueron probar una pequeña cantidad de tratamientos pregerminativos que son efectivos en otras regiones áridas y evaluar los resultados de germinación de 16 especies en comparación con la información existente sobre su desempeño a campo. Este enfoque demostró ser altamente efectivo dado que, de las 16 especies de arbustos evaluadas, 11 mostraron tasas de germinación adecuadas para RRE (es decir, más del 50%). Solo cuatro especies alcanzaron altas tasas de supervivencia y altos valores de cobertura vegetal en las plantaciones, y otras cuatro mostraron altas tasas de supervivencia, pero la cobertura vegetal fue baja o no se evaluó. Argumentamos que sería estratégico adoptar este modelo, que incluye obtener y comparar información sobre la germinación de semillas y el desempeño de las mismas especies a campo, para la selección de especies en RRE.Ecological restoration and rehabilitation (ERR) practitioners lack comprehensive information on the most effective seed dormancy alleviation treatments to enhance germination of native plants from arid and semiarid regions, as well as on survival and growth rates of these species in the field. In this paper we report on the results of a “professional intelligent tinkering” approach to assess seed germination of species from the Monte Austral, an arid region in southern Argentina. We aim to test a small number of seed dormancy alleviation treatments reported to be effective in other arid regions, and to assess germination results for 16 species against existing information on their performance in the field. This approach proved to be highly effective given that, out of the 16 shrub species evaluated, 11 showed germination rates suitable for ERR (i.e., over 50%). Only four species attained both high survival rates and plant cover values in outplantings, while four other species showed high survival rates but their plant cover values were low or not assessed. We argue that this approach, which involves obtaining and comparing data on seed germination rate with performance of the same species in the field, would be strategic for species selection in ERR.Fil: Rodriguez Araujo, María Emilia. Universidad Nacional del Comahue. Facultad de Ciencias del Ambiente y la Salud. Laboratorio de Rehabilitación y Restauración de Ecosistemas Áridos y Semiáridos Degradados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; ArgentinaFil: Pérez, Daniel Roberto. Universidad Nacional del Comahue. Facultad de Ciencias del Ambiente y la Salud. Laboratorio de Rehabilitación y Restauración de Ecosistemas Áridos y Semiáridos Degradados; ArgentinaFil: Aronson, James. Missouri Botanical Garden; Estados Unidos. Ecohealth Network; Estados UnidosFil: Cross, Adam T.. Ecohealth Network; Estados Unidos. Curtin University; Australi

    A novel approach for reliable qualitative and quantitative prey spectra identification of carnivorous plants combining DNA metabarcoding and macro photography

    Get PDF
    Prey spectra (the number and composition of captured arthropods) represent a crucial aspect of carnivorous plant ecology, yet remain poorly studied. Traditional morphology-based approaches for prey identification are time-intensive, require specialists with considerable knowledge of arthropod taxonomy, and are hampered by high numbers of unidentifiable (i.e., heavily digested) prey items. We examined prey spectra of three species of closely-related annual Drosera (Droseraceae, sundews) from tropical northern Australia using a novel DNA metabarcoding approach with in-situ macro photography as a plausibility control and to facilitate prey quantity estimations. This new method facilitated accurate analyses of carnivorous plant prey spectra (even of heavily digested prey lacking characteristic morphological features) at a taxonomic resolution and level of completeness far exceeding morphology-based methods and approaching the 100% mark at arthropod order level. Although the three studied species exhibited significant differences in detected prey spectra, little prey specialisation was observed and habitat or plant population density variations were likely the main drivers of prey spectra dissimilarity

    Size-selective nanoparticle growth on few-layer graphene films

    Full text link
    We observe that gold atoms deposited by physical vapor deposition onto few layer graphenes condense upon annealing to form nanoparticles with an average diameter that is determined by the graphene film thickness. The data are well described by a theoretical model in which the electrostatic interactions arising from charge transfer between the graphene and the gold particle limit the size of the growing nanoparticles. The model predicts a nanoparticle size distribution characterized by a mean diameter D that follows a scaling law D proportional to m^(1/3), where m is the number of carbon layers in the few layer graphene film.Comment: 15 pages, 4 figure

    Restoration ecophysiology: an ecophysiological approach to improve restoration strategies and outcomes in severely disturbed landscapes

    Get PDF
    As human activities destroy and degrade the world's ecosystems at unprecedented scales, there is a growing need for evidence-based methods for ecological restoration if we are to preserve biodiversity and ecosystem services. Mining represents one of the most severe anthropogenic disturbances, often necessitating intensive intervention to restore the most basic attributes of native ecosystems. Despite examples of successful mine-site restoration, re-establishing native vegetation in these degraded landscapes remains a significant challenge. Plant ecophysiology-the study of the interactions between plants and the environment-can provide a useful framework for evaluating and guiding mine-site restoration. By understanding the physiological mechanisms that allow plants to establish and persist in these highly disturbed environments, practitioners may be able to improve restoration outcomes. Specifically, methods in plant ecophysiology can inform site preparation and the selection of plant material for restoration projects, aid in monitoring restoration progress by providing additional insight into plant performance, and ultimately improve our ability to predict restoration trajectories. Here, we review the challenges and benefits of integrating an ecophysiological perspective to mine-site restoration in Western Australia, a global hotspot of biodiversity and mining operations. Using case studies and examples from the region's diverse ecosystems, we illustrate how an ecophysiological approach can guide the restoration of some of the world's most severely disturbed landscapes. With careful selection of study species and traits and consideration of the specific environmental conditions and stressors within a site, the restoration ecophysiology framework outlined here has the potential to inform restoration strategies across ecosystems

    Local Causal States and Discrete Coherent Structures

    Get PDF
    Coherent structures form spontaneously in nonlinear spatiotemporal systems and are found at all spatial scales in natural phenomena from laboratory hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary climate dynamics. Phenomenologically, they appear as key components that organize the macroscopic behaviors in such systems. Despite a century of effort, they have eluded rigorous analysis and empirical prediction, with progress being made only recently. As a step in this, we present a formal theory of coherent structures in fully-discrete dynamical field theories. It builds on the notion of structure introduced by computational mechanics, generalizing it to a local spatiotemporal setting. The analysis' main tool employs the \localstates, which are used to uncover a system's hidden spatiotemporal symmetries and which identify coherent structures as spatially-localized deviations from those symmetries. The approach is behavior-driven in the sense that it does not rely on directly analyzing spatiotemporal equations of motion, rather it considers only the spatiotemporal fields a system generates. As such, it offers an unsupervised approach to discover and describe coherent structures. We illustrate the approach by analyzing coherent structures generated by elementary cellular automata, comparing the results with an earlier, dynamic-invariant-set approach that decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht

    Value-Driven Analysis of New Paradigms in Space Architectures: An Ilities-Based Approach

    Get PDF
    Current commercial, civil, and military space architecture designs perform exquisitely and reliably. However, today’s architecture paradigms are also characterized by expensive launches, large and expensive high-performance spacecraft, long development cycles, and wide variations in ground architectures. While current assets provide high-quality services, and future assets are slated to improve performance within the same design frameworks, proposed future architectures may not be capitalizing on technology improvements, system innovations, or policy alternatives explored during the last two decades. This paper identifies five “trends” along which space architectures may develop, aimed at granting systems several “ilities,” such as resiliency, robustness, flexibility, scalability, and affordability. The trends examined include: commercialization of space, significant reductions in launch costs and the development of hybrid or reusable launch systems, development of on-orbit infrastructure and servicing, aggregation or disaggregation of orbital assets, and the automation and standardization of ground architectures. Further refinement of these key technological and system trends could result in major paradigm shifts in the development and fielding of space operations as well as lead to space architecture designs in the future that are radically different from those today. Within the framework of systems engineering ilities and risk management, this paper reviews current literature surrounding these new change trends and justifies their potential to cause significant paradigm shifts. By examining the work and research conducted so far through an ilities-based approach, systems engineers can more fully appreciate the value being offered by these trends

    A research agenda for seed-trait functional ecology

    Get PDF
    Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology

    Phosphorylation of LCRMP-1 by GSK3β Promotes Filopoda Formation, Migration and Invasion Abilities in Lung Cancer Cells

    Get PDF
    LCRMP-1, a novel isoform of CRMP-1, can promote cancer cell migration, invasion and associate with poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). However, the underlying regulatory mechanisms of LCRMP-1 in cancer cell invasiveness still remain obscure. Here, we report that GSK3β can phosphorylate LCRMP-1 at Thr-628 in consensus sequences and this phosphorylation is crucial for function of LCRMP-1 to promote filopodia formation, migration and invasion in cancer cells. Impediment of Thr-628 phosphorylation attenuates the stimulatory effects of LCRMP-1 on filopodia forming, migration and invasion abilities in cancer cells; simultaneously, kinase-dead GSK3β diminishes regulation of LCRMP-1 on cancer cell invasion. Furthermore, we also found that patients with low-level Ser-9-phosphorylated GSK3β expression and high-level LCRMP-1 expression have worse overall survival than those with high-level inactive GSK3β expressions and low-level LCRMP-1 expressions (P<0.0001). Collectively, these results demonstrate that GSK3β-dependent phosphorylation of LCRMP-1 provides an important mechanism for regulation of LCRMP-1 on cancer cell invasiveness and clinical outcome

    iTRAQ Identification of Candidate Serum Biomarkers Associated with Metastatic Progression of Human Prostate Cancer

    Get PDF
    A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer ‘BPH’, (ii) localised cancer with no evidence of progression, ‘non-progressing’ (iii) localised cancer with evidence of biochemical progression, ‘progressing’, and (iv) bone metastasis at presentation ‘metastatic’. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and ‘panels’ of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation

    The impact of detergents on the tissue decellularization process: a ToF-SIMS study

    Get PDF
    Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the disruption of matrix architecture and surface ligand landscape remains a considerable challenge. Here we describe the use of time of flight secondary ion mass spectroscopy (ToF-SIMS) to provide sensitive, molecular specific, localized analysis of detergent decellularized biologic scaffolds. We detected residual detergent fragments, specifically from Triton X-100, sodium deoxycholate and sodium dodecyl sulphate (SDS) in decellularized scaffolds; increased SDS concentrations from 0.1% to 1.0% increased both the intensity of SDS fragments and adverse cell outcomes. We also identified cellular remnants, by detecting phosphate and phosphocholine ions in PAA and CHAPS decellularized scaffolds. The present study demonstrates ToF-SIMS is not only a powerful tool for characterization of biologic scaffold surface molecular functionality, but also enables sensitive assessment of decellularization efficacy
    corecore