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Summary

Trait-based approaches have improved our understanding of plant evolution, community

assembly and ecosystem functioning. A major challenge for the upcoming decades is to

understand the functions and evolution of early life-history traits, across levels of organization

and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence,

germination timing and seedling establishment, only seed mass has been considered system-

atically. Herewe suggest broadening the range ofmorphological, physiological and biochemical

seed traits to add new understanding on plant niches, population dynamics and community

assembly. The diversity of seed traits and functions provides an important challenge that will

require international collaboration in three areas of research. First, we present a conceptual

framework for a seed ecological spectrum that builds upon current understanding of plant

niches. We then lay the foundation for a seed-trait functional network, the establishment of
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whichwill underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and

challenges associatedwith incorporating diverse seed traits into predictive evolutionary ecology,

community ecology and applied ecology. If the community invests in standardized seed-trait

collection and the implementation of rigorous databases, major strides can be made at this

exciting frontier of functional ecology.

Introduction

Plant life has diversified enormously since the evolution of seeds
(Linkies et al., 2010). Seeds provide evolutionary advantages
compared to spores: they enclose and protect embryos, and enable
them to survive and develop in places and times too dry for many
nonseed plants (Niklas, 2008), store energy and nutrients to
support initial development and growth, increasing offspring
fitness (Lamont & Groom, 2013), and enable colonization after
disturbance and survival during adverse periods (Leishman et al.,
2000; Kreft et al., 2010). A range of morphological (e.g. seed and
embryo size, coat features) and physiological traits (e.g. light,
temperature, water cues) enable seeds to coordinate germination
timing with suitable conditions for seedling establishment
(Saatkamp et al., 2014; Long et al., 2015). Seed and fruit traits
also enable dispersal by animals, humans, wind and water
(Poschlod et al., 2013). By reaching more places, persisting over
greater timescales, and hence being exposed to a greater range of
environmental conditions, seeds increase the likelihood of success-
ful establishment, and subsequent diversification and local adap-
tation (Donohue et al., 2010). The ability to disperse in space and
in time has deep consequences for genetic diversity in plants and,
hence, adaptive dynamics (Tigano & Friesen, 2016). These
characteristics underscore the central role of seeds in understanding
plant ecology and evolution, and how global environmental change
will ultimately impact plants and ecosystems. It is therefore amajor
priority in plant science research to consider both adult and
regenerative stages in order to understand how plant traits map to
seed functions, the plant niche, community structure and ecosys-
tem functioning (Grubb, 1977).

Traits of seeds and fruits have received less attention in plant
science than vegetative traits, except for seed size and mass (Moles
& Westoby, 2006; D�ıaz et al., 2016). We now have a detailed
understanding of leaf and root functional traits and their links to
ecological gradients and ecosystem functioning (Wright et al.,
2004; Mommer & Weemstra, 2012; Sack & Scoffoni, 2013).
Functional traits have been defined asmeasurable features (e.g. seed
mass), which interact with ecological factors (e.g. wind speed, water
potential) through specific functions (dispersal, germination
timing, persistence, establishment) in order to explain plant fitness
components (growth, reproduction and survival), ideallymeasured
on individual organisms (Violle et al., 2007). Although this
conception fits well for some seed traits (e.g. mass, coat thickness),
others are best measured on seed populations and enclose
measurements of the environment (e.g. dispersal potential, germi-
nation cues, dormancy breaking requirements) approaching seed
functions. Understanding how the numerous morphological,
physiological and biochemical seed traits map to seed functions is
necessary to integrate regeneration traits into ecological strategies

and advance predictive models (Liu et al., 2017). The diversity of
seed-related functions makes this a complex but important
challenge.

In the present contribution, we envisage a comprehensive
research agenda to characterize seed-trait variation and map seed
traits to functions, processes and ecological strategies (Fig. 1). A
prerequisite to the research priorities outlined below is the
development of new databases, or updating and aggregating
existing databases, to facilitate the compilation of diverse,
standardized and useful (i.e. functional) seed traits at the global
scale (Fig. 1, Step 1). A global seed-trait database will pave the way
to several emerging and necessary research areas that we develop
below (Fig. 1, Steps 2–6). First, we lay the conceptual foundation
for a seed ecological spectrum, encouraging exploration of trade-offs
and ecological strategies during regeneration (see ‘The seed
ecological spectrum’ section). We then identify relevant seed traits
to be explored for their influence on multiple regeneration
functions at a mechanistic level, forming the foundation for trait-
based hypotheses. Critical here is the desirability of standardizing
and accurately describing seed-trait measurement methodology
(see the ‘Mapping seed traits to their functions’ section). Finally, we
visit three critical areas of functional ecology to discuss the potential
benefits and challenges of exploring: the origin and implications of
intraspecific trait variation (see the ‘Intraspecific variation of seed
traits’ section); the relationships between seed functions, patterns
and processes at the community and landscape levels (see the
‘Linking seed functions to community and landscape dynamics’
section); and the integration of seed traits into applied natural
resource management (see the ‘Seed traits in biodiversity
conservation’ section).

The seed ecological spectrum

A coordinated effort by many plant ecologists studying how plants
optimize productivity, light capture and water use, enabled an
understanding of the leaf economic spectrum (Wright et al., 2004;
Sack & Scoffoni, 2013). Along with plant height and seed mass,
these traits are used to describe the global spectrum of plant form
and function (D�ıaz et al., 2016; Moles, 2018). Likewise, studies of
variation inwater and nutrient uptake by plants, soil anchorage and
the effects of plants on soil moisture, erosion and nitrogen fixation
provide a better understanding of the functions of root traits
(Mommer & Weemstra, 2012). With the exception of seed size,
few seed traits have been included in trait-based ecological studies
that aim to understand ecological strategies and predict functions.

Functions linked to fruit, seed and seedling traits have been
studied extensively; however, studies that have investigated seed
traits often focus on a particular function such as dispersal
(R€omermann et al., 2005) or persistence in the soil seed bank
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(Saatkamp et al., 2011), even though their integration may be key
for species replacement and community dynamics (Jim�enez-Alfaro
et al., 2016; Larson & Funk, 2016). We need coordinated studies
combining a larger spectrum of seed traits and species to discover
how ecological strategies are constructed across regenerative life
stages and ultimately influence plant performance in contrasting
ecological situations. The lack of a trait-based theoretical frame-
work to understand strategies of plant regeneration from seeds
(Funk et al., 2017) is striking given the significance of regeneration
traits for adaptation to the environment (Finch-Savage&Leubner-
Metzger, 2006; Liu et al., 2017) and the vast amount of
information available on seed germination and dormancy (Baskin
& Baskin, 2014).

The development of a theoretical plant regeneration framework
will require delving into trait trade-offs, which underpin our
understanding of multidimensional plant ecological strategies.
Although the seed size–number trade-off is well understood as a
major dimension of trait variation (Moles & Westoby, 2006),
other functional relationships between different axes of seed-trait
variation need to be explored, and suggested trade-offs between
vegetative and seed traits, such as between seed dormancy and
adult longevity (Rees, 1993), need further empirical exploration.
Grubb (1977) proposed that the regeneration niche is related to

separate ecological factors (relative to the adult niche) that drive
dispersal, seed persistence, germination timing and establishment
of new individuals based on outstanding differences of traits
during the regeneration phase (Fig. 2). However, little progress
has been made in this direction over the last 40 years, and similar
questions continue to arise: Are comparable trade-offs detectable
among seed traits and functions? If so, are these seed-trait spectra
independent of, or coordinated with, resource-related vegetative
trait axes?

Although resource allocation in seeds – and hence the ‘economy’
of seeds – is important for different stages of regeneration, it needs
to be considered in the larger context of recruitment processes
(Pierce et al., 2014). The economic spectra of leaves and roots have
their conceptual basis in the allocation of resources to alternative
functions that cannot be optimized simultaneously (Wright et al.,
2004), but seedsmay encompass functions independent of resource
economic constraints (Liu et al., 2017). For example, seeds with
similar masses may have large variation in germination physiology
and their response to environmental factors (Ar�ene et al., 2017) and
germination timing might constitute an independent axis of
variation compared to morphology and chemistry (Fig. 2). The
ability of seeds to disperse, persist, germinate and establish depends
on sets of trait-based ecological responses, which, if coordinated
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across individual species, define a seed ecological spectrum (SES).We
need to understand the functional significance of trade-offs not
only between seed size and number (Moles &Westoby, 2006), but
also between, for example, physical and chemical defences, or
different storage reserves (Davis et al., 2008; Lamont & Groom,
2013). The diverse set of traits regulating seed ecology needs careful
and coordinated study in order to identify the main axes of seed-
trait variation. A nonexhaustive list of seed traits that might be
measured in the SES are listed in Fig. 3.

Understanding the SES also must integrate plant evolutionary
history. Notwithstanding early recognition of its importance (e.g.
Martin, 1946; Grushvitzky, 1967), the phylogenetic signal of seed
traits such as desiccation tolerance (Wyse & Dickie, 2017),
dormancy (Willis et al., 2014), embryoless seeds (Dayrell et al.,
2017), photo-inhibition (Carta et al., 2017), embryo size (Forbis
et al., 2002; Vandelook et al., 2012) and germination temperature
ormoisture (Ar�ene et al., 2017) has only been recently quantified in
such a way as to be accessible for statistical purposes. Indeed, many
other seed traits may show correlations with phylogeny, and many
more trait–trait relationships are likely to exist as well, for example
between germination speed and seed persistence (Saatkamp et al.,
2011; Kadereit et al., 2017). Integrating seed traits that can be
collated from experimental studies and analysed at global scales is a
research priority, and is necessary to shed light on unknown trade-
offs across habitats and biomes.

A collaborative effort by plant ecologists and seed scientists can
provide the data and knowledge needed for a global synthesis of the
SES. Specifically, we need to: (1) identify the major principles and
hypotheses regarding the coordinated ecological responses of seeds
to their environment; (2) lay the foundation for global seed-trait
databases; (3) establish standardized nomenclature and protocols
for filling knowledge gaps on seed traits, complete databases,
reducing phylogenetic and geographical biases; and (4) test
identified hypotheses with empirical data compiled from global
information synthesized in a ready-to-use database. To facilitate
synthesis of seed-trait data, we encourage researchers and seed bank
managers to share raw germination data together with carefully
prepared metadata in a standardized public database. The recent
ENSCONET (http://ensconet.maich.gr) initiative is a good
starting point, but databases should cover a large array of seed
traits to really meet the needs for a global understanding on seed
functionality.

Mapping seed traits to their functions

In order to guide data collection and empirical efforts endeavouring
to integrate seed traits into functional ecology, we propose that
focal traits should be targeted in relation to four key seed functions:
dispersal, persistence, germination timing and seedling establish-
ment (Fig. 3). These functions capture the essential roles of seeds in
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Fig 2 The seed ecological spectrum. We hypothesize that seed traits (red arrows) exhibit trade-offs and axes of covariation linked to several major functions
(black arrows). Together, these spectra help to characterize key dimensions of the regenerationniche.A rangeof seed traitsmay feed into these spectra (Fig. 3),
and whereas the seed size–number trade-off is a well-identified trait set underpinning dispersal and establishment functions, the axes of trait covariation that
generate dormancy and germination phenology as well as persistence are still to be quantified. Note that direction and traits on axes are hypothetical.
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dispersal when germination – that is, radicle emergence – occurs; it bridges unfavourable conditions andmatches seedling emergence to the optimalmoments
for regeneration. Seeds can schedule their emergence by dormancy traits and breaking requirements that interact with the seed environment and, once
nondormant, with germination traits, such as light and temperature requirements. Establishment (blue) comprises all subsequent functions after germination
(emergence, establishment) that result in the successful recruitment of individuals into a population, and also includes seedling traits. Seed traits shown here
represent traits broadly (e.g. ‘seedmetabolic rate’ is theCO2/O2gas exchangeof seeds under standardized conditions; ‘dispersal potential’ is an indexbasedon
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seed coat, e.g. phenols, and mechanical resistance). We plan to publish a handbook that complements this work with detailed definitions, methods of
measurements, and standardized data reporting for seed functional traits.
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populations, communities and landscapes, and point to research
directions for identifying relevant traits and their trade-offs within
and across regenerative processes. We suggest a core collection of
seed traits, which we expect to be strongly linked to these functions
(Fig. 3). Only a few seed traits have been successfully included in
mechanistic frameworks, andmost still need empirical tests of their
hypothesized functions. We therefore suggest the four key seed
functions as major ‘nodes’ of a hypothesized seed-trait network,
each of which is connected to multiple traits (Fig. 3) and is
implicated in hypothesized dimensions of a seed ecological
spectrum (Fig. 2). To understand the origins (see the ‘Intraspecific
variation of seed traits’ section) and implications (see the ‘Linking
seed functions to community and landscape dynamics’ and ‘Seed
traits in biodiversity conservation’ sections) of seed-trait variation,
we suggest testing the hypothesized relationships (Fig. 3) and
identifying the axes (Fig. 2) in different environmental contexts, at
multiple scales, and within and among species and higher
taxonomic groups. Most evidently, seed traits also should be
analysed together with other plant traits to fully understand their
interactions, such as the relationships between plant height and
dispersal (Tackenberg et al., 2003), or between life-cycle strategies
and seedling establishment.

Dispersal – How do plant traits and their dispersal units
operate through biotic and abiotic dispersal vectors to allow
seeds to reach favourable sites?

Traits related to this node allow us to better understand how, and
how efficiently, seeds disperse to sites optimal for survival,
germination and seedling establishment. This includes dispersal
to favourable microhabitats for regeneration within an environ-
ment favourable for adults, or across unfavourable matrices to
spatially restricted habitats. These traits help us to understand how
seeds explore new sites, or howpopulations can persist under locally
shifting conditions, and ultimately how seed traits influence
shifting distribution ranges with changing environments. Putative
traits include not only seed production, but also aspects of seed
morphology influencing abiotic travel distance (e.g. seed mass,
shape, and surface features such as texture, hairs and appendages)
and biotic travel distance (e.g. seed coat thickness, rewards, scent,
colour and surface features), traits indicating affinity to a specific
dispersal vector, and potential responses to seasonal or global
change (e.g. duration and seasonality of seed release).

Seed persistence & germination timing – How do seed traits
interact with daily, seasonal and inter-annual variability in
environmental factors to avoid or survive temporally
unfavourable conditions, and to sense periods of favourable
conditions?

Because seeds are the primary recruitment unit of plant popula-
tions, it is critical to understand how populations recover via
persistent seed banks or freshly dispersed seeds. In many habitats,
seedlings are more strongly exposed to hazards following germina-
tion, so we expect populations to avoid or distribute risk via
persistence traits, which enable seed survival until conditions are

favourable for germination and seedling establishment. This holds
only for desiccation tolerant (orthodox) seeds, whereas seedling
banks play similar roles for species with desiccation sensitive
(recalcitrant) seeds (e.g. inmoist tropical forests).Germination and
dormancy traits also play a critical role in influencing the timing of
seed germination in response to environmental factors. Relevant
seed traits for persistence increase seed survival betweenmaturation
and germination and are related to seed defence, metabolism and
resources, which are, in turn, moderated by environmental factors
(Fig. 3). For germination timing, seed traits will be related to
sensing the optimal regeneration environment through seed coat
permeability, germination requirements, chemical cues and dor-
mancy breaking requirements. These germination and dormancy
traits lead to a germination timing that not only bridges
unfavourable conditions, but also optimizes the fitness of seedlings
by delivering germinated seeds at the best moment (Fig. 3).
Germination timing covers all aspects ranging from pluriannual
regeneration windows such as post-fire or -disturbance, over
regeneration seasons (then rather termed germination phenology),
to short running constraints such as drying soil after rainfall or
growing competitors.

Establishment – How do traits of the germinating seed and
seedling interact with local habitat conditions, predators,
pathogens and competitors during seedling establishment?

Germination leads into a period of extreme vulnerability, when the
transition to autotrophy requires seedlings to overcome multiple
potential stressors. This period is influenced by seed-trait properties
such as timing of germination, seed carbon, phosphorus and
nitrogen content, ratios of lipids, carbohydrates and proteins, as
well as traits of the developing seedling such as growth rates,
mechanical resistance and seedling stress tolerance, themselves
linked to seed traits.We suggest that empirical efforts explore both,
with particular emphasis on traits related to biotic interactions of
seeds and seedlingswith plants and other trophic groups (e.g. fungi,
granivores). For example, there is growing evidence that the seed
microbiome (Nelson, 2018) has extensive implications for seedling
establishment. Finally, in addition to the potential functional
importance of establishment traits, we think that in-depth studies
of this transitory period present an unique opportunity to better
understand links between the ecological strategies of seeds and adult
plants. These efforts will pave the way towards incorporating seed
traits into the larger picture of plant function (see the ‘The seed
ecological spectrum’ section).

Intraspecific variation of seed traits

Species-level generalizations in functional ecology are at odds with
evidence that the explanatory power of trait-based mechanistic
models depends on how realistically intraspecific trait variation is
represented (Albert et al., 2010; Albert, 2015). Intraspecific trait
variability (ITV) is notoriously high for many seed traits, including
seed colour, seed appendages, germination requirements and
dispersal-related traits (Cheptou et al., 2008; Fern�andez-Pascual
et al., 2013; Guerra et al., 2017), and has important consequences
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for seed-related functions (Albert et al., 2011; Cochrane et al.,
2015). We therefore need to consider adaptive advantages and
sources of intraspecific variation in seed traits.

Intraspecific trait differences can be inherited characteristics of
populations (Cheptou et al., 2008; Cochrane et al., 2015) or
characteristics that vary as a function of the environment (pheno-
typic plasticity;Nicotra et al., 2010;Cochrane et al., 2014). In both
cases, intraspecific variation could have important implications for
regeneration. For example, plants can maximize their long-term
fitness by increasing the variability of offspring seed traits, known as
bet-hedging in the context of dormancy and germination traits
(Tielb€orger et al., 2011; Huang et al., 2016). Unfortunately, few
studies have considered reaction norms in seed traits and their
responses to selection gradients (Cheptou et al., 2008; Nicotra
et al., 2015). We therefore need studies investigating the impact of
intraspecific seed-trait variability on functions beyond the known
cases of variability in dispersal potential (Guja et al., 2014; Albert,
2015), or dormancy-breaking and germination requirements
(Huang et al., 2016), especially in situations where dispersers or
establishment seasons vary. For example, defence and seedling traits
also might exhibit variation that relates to the spatiotemporal
variability of predators, pathogens and light conditions.

Seed traits pose an added layer of complexity as they reflect
both parental- and offspring-driven effects. Because parent and
progeny experience conflicting selective pressures on seed traits,
studies need to identify plasticity at different stages. For
example, dormancy can vary as a function of developmental
conditions via maternal tissue in the seed coat, or as a function
of responses to those conditions at the level of endosperm (both
parents) or embryo (offspring tissue). Within a species, selection
could potentially act on these levels differentially leading to
intraspecific variation in dormancy strategies (Valleriani &
Tielb€orger, 2006; Donohue, 2009).

Underlying mechanisms for intraspecific variation in seed traits
include local adaptation, drift, hormonal controls, resource
provisioning and epigenetic controls. Unfortunately, we rarely
have data on the covariation of the environment of mother plants
and seed traits such as germination speed or temperatures (Chen&
Penfield, 2018). However, if we are to standardize methods and
empirical data on seed traits, we will need to consider how to
adequately describe ITV as well as covariates, including relevant
variables of the maternal environment. We propose that seed-trait
sampling should be sensitive to ecologically important ITV and
that researchers should report whether a trait value reflects a mean
for an individual, a subset of individuals within a population or a
broader collection. Ideally, individual traits might be sampled
across populations that represent variation in potential ecological
drivers such as rainfall or soil conditions.

Linking seed functions to community and landscape
dynamics

Functional traits are increasingly used to understand how abiotic
and biotic filters drive community assembly (G€otzenberger et al.,
2012; Funk et al., 2017). Early studies highlight the role of seed
banks and germination as relevant filters (Keddy, 1992; Weiher &

Keddy, 2001) and dispersal, germination timing and seedling
establishment have long been seen as key functions to understand-
ing coexistence (Connell & Slatyer, 1977; Grubb, 1977). Surpris-
ingly, however, currentmodels make little use of seed traits in plant
community assembly.

When seed-trait variation is incorporated, studies on different
phases of community assembly reveal a major role, for example, for
dispersal limitation (Schupp et al., 2010; Poschlod et al., 2013) and
for persistence (Saatkamp et al., 2014; Gardarin et al., 2015).
Variation in seed traits also is pivotal for the tolerance–fecundity
trade-off (Muller-Landau, 2010) and for bet-hedging (Venable &
Brown, 1988; Tielb€orger et al., 2011).Moreover, seed traits enable
vegetation to rapidly respond to changes in humidity, light and
herbivory (Briggs et al., 2009; Metzner et al., 2017). Finally, seed
traits influence soil seed-bank dynamics across seasons and periodic
disturbances such as fire (Merritt et al., 2007; Miller & Dixon,
2014). A more complete understanding of community dynamics
should therefore include local, seed-dependent functions.

First, we need to deepen our understanding of the interaction
between seed persistence in soil and dispersal within communities.
The hypothetical trade-off between dispersal and local persistence
(Venable & Brown, 1988; Ehrl�en & van Groenendal, 1998) does
not always show up in data from natural communities (Waal et al.,
2015; Metzner et al., 2017), yet it has important consequences for
whether community composition changes via migration or seed
bank dynamics. Second, althoughwe have a detailed understanding
of dormancy breaking and germination cueing (Batlla & Benech-
Arnold, 2010; Baskin & Baskin, 2014), we struggle to predict
germination dynamics in communities (Larson & Funk, 2016).
Predicting seedling emergence could require a detailed under-
standing of vertical seed movement in the soil, wet–dry cycles and
belowground interactions (Gardarin et al., 2012; Saatkamp et al.,
2014). It thus remains a major challenge to build mechanistic
models of regeneration niches for multiple species.

Limited utilization of seed traits also limits our current
understanding of mechanisms that enable coexistence in plant
communities, such as seed persistence and adaptive trade-offs in the
storage effect (Chesson&Warner, 1981; Angert et al., 2009), shifts
in coexistence equilibria resulting from climate change (Kimball
et al., 2010) and dispersal–survival trade-offs for diversity in plant
communities (Janzen, 1970; McGill & Nekola, 2010). Most trait-
based models have missed the role of interspecific variation in
regenerative traits for coexistence (G€otzenberger et al., 2012;
Marques et al., 2014) and, importantly, beyond including those
traits that characterize optimal conditions (i.e. the ideal regener-
ation niche), we urgently need to quantify the range of possible
regeneration conditions for each species (regeneration niche
breadth).

At the landscape scale, understanding dispersal will be critical to
predicting vegetation responses to environmental changes and
human impacts. Vegetation patterns that are linked to landscape
structure strongly rely on dispersal capacity (Jackel & Poschlod,
2000; Cheptou et al., 2008), and to local seed persistence through
temporally varying conditions (Gremer&Venable, 2014;Metzner
et al., 2017). Themany factors involved indispersal and subsequent
establishment of plantsmake it difficult to determinewhich of these
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two functions is most limiting at the landscape scale (Poschlod &
Biewer, 2005; Guja et al., 2010). Dispersal is linked to seed traits
such as seed production and mast fruiting (Bruun & Poschlod,
2006; Visser et al., 2011), rewards for dispersers (Forget et al.,
2005; Traveset et al., 2014), terminal velocity (Tackenberg et al.,
2003), adhesive seed surfaces (R€omermann et al., 2005), seed
number per plant, location, season and the duration ofmature seed
retention onmother plants (Poschlod et al., 2013). Furthermore, in
most seed dispersal networks, we are far from knowing how to
mechanistically link seed traits to predict effective dispersal
distances or vectors (Bullock et al., 2017). Because dispersal
effectiveness depends on spatial scale, an important future direction
of trait-based ecology will be to incorporate dispersal and
establishment limitations, from community to biogeographical
scales.

When dispersal moves seeds beyond the climatic or habitat
conditions of their mother-plants, additional seed and fruit traits
come into play to determine distribution across landscapes: Will
seeds survive travelling times during long-distance dispersal? Will
there be enough dispersed seeds to establish a viable population?
Does the germination niche fit the new conditions? Seed traits
could be used to delineate species boundaries by determining the
germination niche (Rosbakh & Poschlod, 2014; Ar�ene et al.,
2017). Still, we need to better identify which seed and fruit traits are
likely to drive species’ geographical distributions, and how they can
be linked together with vegetative traits in a mechanistic under-
standing of geographical range shifts (Gonz�alez-Varo et al., 2017).

Seed traits in biodiversity conservation

Research on seed traits provides important knowledge for biodi-
versity conservation and can inform decisions for in situ manage-
ment of species, populations or communities, ex situ seed
conservation and ecological restoration. At the population level,
seed-based functions such as dispersal and persistence are known to
be correlated with population resilience and decline (R€omermann
et al., 2008), or with habitat fragmentation (Galetti et al., 2013)
and management actions impacting ecological processes (Kahmen
et al., 2002). Seed traits affecting dispersal (Ozinga et al., 2009) or
persistence in the soil seed bank (St€ocklin & Fischer, 1999) can
differentially impact species’ survival and are therefore an impor-
tant consideration when managing fragmented populations. Seed
traits also can be useful for anticipating responses to land-use
change. During assembly, for example, seed traits have been shown
to interact with grazing and clear cutting (Piqueray et al., 2015), as
well as fire frequency or season (Gomez-Gonzalez et al., 2011; Ooi,
2012), to determine outcomes.

Identifying which seed traits are relevant for management
decisions could allow such traits to be integrated into conservation
strategies– a particular priority for threatened species (Turner et al.,
2018). For example, when managing canopy cover or disturbance,
decision-makers may draw upon knowledge of seed size (Kahmen
et al., 2002; Jensen & Gutekunst, 2003), gap detection by
germination responses (Isselstein et al., 2002) and seasonal germi-
nation niches (Kahmen&Poschlod, 2008;Drobnik et al., 2011) to
predict and weigh potential outcomes. Knowledge of seed traits

such as shedding phenology, dormancy cycling, burial depth and
thermal tolerance could aid management strategies for threatened
species in fire-prone ecosystems under a warming climate (Ooi,
2012; Cochrane, 2017). Understanding seed germination timing
and persistence also is essential for the conservation of fire-
ephemerals and annuals that survive for substantial proportions of
their life cycle as seeds in the soil (Cross et al., 2017). Finally, other
reproductive traits such as mast fruiting and supra-annual repro-
ductive cycles in many tropical plants will help to evaluate their
vulnerability to human impacts (Kelly & Sork, 2002).

Seeds also play an important role in conserving biological diversity,
where an understanding of trait variation could impact strategies to
add seed material when suitable dispersal vectors are unavailable or
when plants have reduced soil seed-bank persistence (Poschlod &
Biewer, 2005; Kiehl et al., 2010). There also are opportunities to
draw on seed-trait variation to manage invasive species based, for
example, on the time or chemical cues necessary to deplete seed
banks, or germination season and the effect of fire on germination
(Long et al., 2015). Germination timing also has been shown to be
critical in determining competition outcomes with invasive species
(Gioria & Py�sek, 2017). Because trait-based inferences can reduce
uncertainty and facilitate generalization to rare species, populations
or communities, future syntheses on seed-trait functions will provide
an invaluable resource for biodiversity conservation.

The ongoing decline in plant diversity also has demanded ex situ
management practices, one of the most practicable being the
external storage of seeds in gene banks. Seed traits are likely to be
intrinsically linked to seed survival in long-term storage, although
identifying and quantifying seed traits related to longevity and
desiccation tolerance, while also partitioning environmental
drivers, can be challenging (Probert et al., 2009; Hay & Probert,
2013). Landmark studies have uncovered functional traits associ-
ated with seed longevity in ex situ storage (Probert et al., 2009;
Merritt et al., 2014), yet there are likely many insights to be gained
by demonstrating the functions of those traits. Some traits such as
seedmass have been associated either positively (Moles&Westoby,
2006) or negatively (Thompson et al., 1998) with seed longevity in
different studies, leaving an additional uncertainty about how to
relate field and experimental findings. Therefore, a comprehensive
global assessment focused on linking traits to external seed storage
responses could yield many new trait-based insights to inform ex
situ conservation practices. A greater awareness of seed traits, their
functions and phylogenetic distribution (Wyse & Dickie, 2017) is
relevant not only for effective seed banking practices, but for
countries to effectively meet the targets of the Global Strategy for
Plant Conservation (COP, 2002).

Seed banking and evaluation of early life-history traits is inmany
cases a prerequisite for successful ecological restoration (Miller
et al., 2017). Large-scale restoration often relies on seed, and
therefore on knowledge of seed production, dormancy and
germination characteristics (Merritt & Dixon, 2011). These traits
may be key for determining the suitability of species for restoration
(Perring et al., 2015; Ladouceur et al., 2018), for optimizing pre-
treatments to enhance performance such as emergence (Comman-
der et al., 2017; Erickson et al., 2018) and drought tolerance
(Lewandrowski et al., 2016), for understanding when and where
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seeds may germinate (Commander et al., 2017), or for promoting
germination by applying specific cues (Tieu, 2001). The interac-
tion between seed traits and abiotic factors such as soil physico-
chemical propertiesmay influence seedling emergence patterns and
consequently seedling community composition in restored areas
(Merino-Mart�ın et al., 2017a). In addition, insight into seed
functional traits may provide restoration managers with a better
understanding of why seedling recruitment may fail (Merino-
Mart�ın et al., 2017b). Although trait-enhanced colonization may
be a focus early in restoration efforts, traits linked to seed bank
persistence and dispersal are increasingly recognized as important
determinants of long-term success (Pywell et al., 2003). Seed bank
persistence is of particular importance to restoration projects that
use topsoil as a seed source. A better understanding of the seed traits
that enable seed persistence in stockpiled topsoil, and ways to
manage the seed bank in receptor sites, will lead to improved
restoration outcomes (Buisson et al., 2018).

Epilogue

Our knowledge of plasticity, adaptation, evolution, distribution
and dynamics of plants needs to include a deeper understanding of
seed traits and functions to anticipate how biodiversity will respond
to human impacts, and how to preserve natural ecosystems. Once
we identify seed traits and functions related to seed dispersal,
persistence, germination timing and establishment, the goal for
ecologists will be to incorporate these traits into our understanding
of ecological and evolutionary processes across organizational and
spatiotemporal scales. Our research agenda is based on functional
seed traits with strong impacts on plant populations with the
potential to predict diversity patterns and processes at different
spatiotemporal scales, to assess the vulnerability of species and
communities that aremost vulnerable to global changes, to support
the prioritization of conservation actions and to promote ecological
restoration, securing provisioning of food and ecosystem services
for a growing human population.

In order to develop a robust seed-trait database and enable larger
scale comparisons, we need to synthesize the different methodolo-
gies used tomeasure seed traits. Although some trait measurements
may be standardized, it is important to report themethodologies in
sufficient detail and with relevant metadata, because it is often
meaningful to measure seed traits in different ways. For example,
when considering dispersal, fresh dispersule weight might be
relevant, whereas dry weight may be a better indicator of available
resources when studying seedling survival.

In the present contribution, we call for a global seed-trait
database that will facilitate exploration of the seed ecological
spectrum, opening a black box in functional ecology and allowing a
more integrated view of plant function across all life stages. A global
database of seed traits will be of pivotal importance for biological
conservation in a world with increasing human impacts on
vegetation, which is being devastated, regenerated and/or restored.
We also need a comprehensive definition of the seed traits and
functions that have been introduced here, using standardized
methods to measure traits from existing datasets or from the
experiments that seed ecologists will conducted in the following

years. Finally, to improve long-term conservation and restoration
successes across multiple generations, we advocate for increased
research into each of the four seed functions in applied contexts.
Such research will drive a shift from degradation- and ecosystem-
specific restoration strategies to a generalized knowledge of traits
that guide restoration strategies and increase their success. These
challenges will require funding and international coordination
among seed scientists and plant ecologists encompassing different
views and disciplines.

Acknowledgements

This paper is a product of an international workshop on seed traits
held in Perth, Australia inOctober 2016.We thank the CSIRO for
the ‘Cutting Edge Science Symposium’ grant (R-90470-01) and
Kings Park Science for hosting and supporting the event.

Author contributions

ASaatkamp, AC, LC, LKG, BJ-A, JL, AN, PP and FAOSwrote the
manuscript; ASaatkamp, AC, LC, LKG, BJ-A, JL, AN, PP, FAOS,
ATC, ELD, JD, TEE, AFidelis, AFuchs, PJG, MH, WL, DJM,
BPM, RGM, CAO, MKJO, ASatyanti, KDS, RT, STomlinson,
STurner and JLW contributed to design, performance of research,
writing and revision of the manuscript.

ORCID

Anne Cochrane http://orcid.org/0000-0001-5002-368X
Emma L. Dalziell http://orcid.org/0000-0003-4463-9984
Todd E. Erickson http://orcid.org/0000-0003-4537-0251
Alessandra Fidelis http://orcid.org/0000-0001-9545-2285
Peter J. Golos http://orcid.org/0000-0003-3588-7011
Lydia K. Guja http://orcid.org/0000-0001-5945-438X
Borja Jimenez-Alfaro http://orcid.org/0000-0001-6601-9597
Julie Larson http://orcid.org/0000-0001-7968-916X
Wolfgang Lewandrowski http://orcid.org/0000-0002-7496-
7690
Ben P. Miller http://orcid.org/0000-0002-8569-6697
Adrienne Nicotra http://orcid.org/0000-0001-6578-369X
Catherine A. Offord http://orcid.org/0000-0002-9553-6590
Peter Poschlod http://orcid.org/0000-0003-4473-7656
Arne Saatkamp http://orcid.org/0000-0001-5638-0143
Annisa Satyanti http://orcid.org/0000-0003-3922-4346
Fernando A. O. Silveira http://orcid.org/0000-0001-9700-
7521
Ryan Tangney http://orcid.org/0000-0002-6659-664X
Sean Tomlinson http://orcid.org/0000-0003-0864-5391
Shane Turner http://orcid.org/0000-0002-9146-2977
Jeffrey L. Walck http://orcid.org/0000-0002-8518-9900

References

Albert C. 2015. Intraspecific trait variability matters. Journal of Vegetation Science
26: 7–8.

New Phytologist (2019) 221: 1764–1775 � 2018 The Authors

New Phytologist� 2018 New Phytologist Trustwww.newphytologist.com

Review Research review
New
Phytologist1772

http://orcid.org/0000-0001-5002-368X
http://orcid.org/0000-0001-5002-368X
http://orcid.org/0000-0001-5002-368X
http://orcid.org/0000-0003-4463-9984
http://orcid.org/0000-0003-4463-9984
http://orcid.org/0000-0003-4463-9984
http://orcid.org/0000-0003-4537-0251
http://orcid.org/0000-0003-4537-0251
http://orcid.org/0000-0003-4537-0251
http://orcid.org/0000-0001-9545-2285
http://orcid.org/0000-0001-9545-2285
http://orcid.org/0000-0001-9545-2285
http://orcid.org/0000-0003-3588-7011
http://orcid.org/0000-0003-3588-7011
http://orcid.org/0000-0003-3588-7011
http://orcid.org/0000-0001-5945-438X
http://orcid.org/0000-0001-5945-438X
http://orcid.org/0000-0001-5945-438X
http://orcid.org/0000-0001-6601-9597
http://orcid.org/0000-0001-6601-9597
http://orcid.org/0000-0001-6601-9597
http://orcid.org/0000-0001-7968-916X
http://orcid.org/0000-0001-7968-916X
http://orcid.org/0000-0001-7968-916X
http://orcid.org/0000-0002-7496-7690
http://orcid.org/0000-0002-7496-7690
http://orcid.org/0000-0002-7496-7690
http://orcid.org/0000-0002-8569-6697
http://orcid.org/0000-0002-8569-6697
http://orcid.org/0000-0002-8569-6697
http://orcid.org/0000-0001-6578-369X
http://orcid.org/0000-0001-6578-369X
http://orcid.org/0000-0001-6578-369X
http://orcid.org/0000-0002-9553-6590
http://orcid.org/0000-0002-9553-6590
http://orcid.org/0000-0002-9553-6590
http://orcid.org/0000-0003-4473-7656
http://orcid.org/0000-0003-4473-7656
http://orcid.org/0000-0003-4473-7656
http://orcid.org/0000-0001-5638-0143
http://orcid.org/0000-0001-5638-0143
http://orcid.org/0000-0001-5638-0143
http://orcid.org/0000-0003-3922-4346
http://orcid.org/0000-0003-3922-4346
http://orcid.org/0000-0003-3922-4346
http://orcid.org/0000-0001-9700-7521
http://orcid.org/0000-0001-9700-7521
http://orcid.org/0000-0001-9700-7521
http://orcid.org/0000-0002-6659-664X
http://orcid.org/0000-0002-6659-664X
http://orcid.org/0000-0002-6659-664X
http://orcid.org/0000-0003-0864-5391
http://orcid.org/0000-0003-0864-5391
http://orcid.org/0000-0003-0864-5391
http://orcid.org/0000-0002-9146-2977
http://orcid.org/0000-0002-9146-2977
http://orcid.org/0000-0002-9146-2977
http://orcid.org/0000-0002-8518-9900
http://orcid.org/0000-0002-8518-9900
http://orcid.org/0000-0002-8518-9900


Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C. 2011.When and how

should intraspecific variability be considered in trait-based plant ecology?

Perspectives in Plant Ecology, Evolution and Systematics 13: 217–225.
Albert CH, ThuillerW, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S.

2010. Intraspecific functional variability: extent, structure and sources of

variation. Journal of Ecology 98: 604–613.
Angert AL, Huxman TE, Chesson P, Venable DL. 2009. Functional trade-offs

determine species coexistence via the storage effect. Proceedings of the National
Academy of Sciences, USA 106: 11 641–11 645.

Ar�ene F, Affre L, Doxa A, Saatkamp A. 2017. Temperature but not moisture

response of germination shows phylogenetic constraints while both interact with

seed mass and life span. Seed Science Research 27: 110–120.
BaskinCC, Baskin JM. 2014. Seeds: ecology, biogeography, and evolution of dormancy
and germination. Burlington, MA, USA: Academic Press.

BatllaD,Benech-ArnoldRL. 2010.Predicting changes in dormancy level in natural

seed soil banks. Plant Molecular Biology 73: 3–13.
Briggs JS,Wall SBV, Jenkins SH. 2009.Forest rodents provide directed dispersal of

Jeffrey pine seeds. Ecology 90: 675–687.
BruunHH, Poschlod P. 2006.Why are small seeds dispersed through animal guts:

large numbers or seed size per se? Oikos 113: 402–411.
Buisson E, Jaunatre R, R€omermann C, Bulot A, Dutoit T. 2018. Species transfer

via topsoil translocation: lessons from two large Mediterranean restoration

projects. Restoration Ecology 26: 179–188.
Bullock JM, Mallada Gonz�alez L, Tamme R, G€otzenberger L, White SM, P€artel

M, Hooftman DAP. 2017. A synthesis of empirical plant dispersal kernels.

Journal of Ecology 105: 6–19.
CartaA, Skourti E,MattanaE,VandelookF,ThanosCA. 2017.Photoinhibition of

seed germination: occurrence, ecology and phylogeny. Seed Science Research 27:
131–153.

Chen M, Penfield S. 2018. Feedback regulation of COOLAIR expression controls

seed dormancy and flowering time. Science 360: 1014–1017.
Cheptou PO, Carrue O, Rouifed S, Cantarel A. 2008. Rapid evolution of seed

dispersal in an urban environment in the weed Crepis sancta. Proceedings of the
National Academy of Sciences, USA 105: 3796–3796.

Chesson PL,Warner RR. 1981. Environmental variability promotes coexistence in

lottery competitive systems. American Naturalist 117: 923–943.
Cochrane A. 2017. Are we underestimating the impact of rising summer

temperatures on dormancy loss in hard-seeded species? Australian Journal of
Botany 65: 248–256.

Cochrane A, Hoyle GL, Yates CJ, Wood J, Nicotra AB. 2014. Evidence of

population variation in drought tolerance during seed germination in four

Banksia (Proteaceae) species fromWestern Australia.Australian Journal of Botany
62: 481–489.

Cochrane A, Yates CJ, Hoyle GL, Nicotra AB. 2015.Will among-population

variation in seed traits improve the chance of species persistence under climate

change? Global Ecology and Biogeography 24: 12–24.
Commander LE,Golos PJ,Miller BP,MerrittDJ. 2017. Seed germination traits of

desert perennials. Plant Ecology 218: 1077–1091.
Connell JH, Slatyer RO. 1977.Mechanisms of succession in natural communities

and their role in community stability and organization. American Naturalist 111:
1119–1144.

COP. 2002. Decision VI/9, Global Strategy for Plant Conservation, 2002–2010.
Sixth Ordinary Meeting of the Conference of the Parties to the Convention on
Biological Diversity (COP 6). The Hague, the Netherlands. Montreal, Canada:

CBD Secretariat.

Cross AT, PaniwM,Ojeda F, Turner SR,DixonKW,Merritt DJ. 2017.Defining

the role of fire in alleviating seed dormancy in a rare Mediterranean endemic

subshrub. AoB Plants 9: doi: 10.1093/aobpla/plx1036.
Davis AS, Schutte BJ, Iannuzzi J, RennerKA. 2008.Chemical and physical defense

of weed seeds in relation to soil seedbank persistence.Weed Science 56: 676–684.
Dayrell RLC, Garcia QS, Negreiros D, Baskin CC, Baskin JM, Silveira FAO.

2017. Phylogeny strongly drives seed dormancy and quality in a climatically

buffered hotspot for plant endemism. Annals of Botany 119: 267–277.
D�ıaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M,

Wirth C, Prentice IC. 2016. The global spectrum of plant form and function.

Nature 529: 167–171.

Donohue K. 2009. Completing the cycle: maternal effects as the missing link in

plant life histories. Philosophical Transactions of the Royal Society. Series B:
Biological Sciences 364: 1059–1074.

Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. 2010.

Germination, postgermination adaptation, and species ecological ranges. Annual
Reviews of Ecology Evolution and Systematics 41: 293–319.

Drobnik J, R€omermann C, Bernhardt-R€omermann M, Poschlod P. 2011.

Adaptation of plant functional group composition to management changes in

calcareous grassland. Agriculture, Ecosystems & Environment 145: 29–37.
Ehrl�en J, van Groenendal JM. 1998. The trade-off between dispersability and

longevity – an important aspect of plant species diversity. Applied Vegetation
Science 1: 29–36.

Erickson TE, Mu~noz-Rojas M, Kildisheva OA, Stokes BA, White SA, Heyes JL,

Dalziell EL, Lewandrowski W, James JJ, Madsen MD. 2018. Benefits of

adopting seed-based technologies for rehabilitation in themining sector: a Pilbara

perspective. Australian Journal of Botany 65: 646–660.
Fern�andez-Pascual E, Jim�enez-Alfaro B, Caujap�e-Castells J, Ja�en-Molina R, D�ıaz

TE. 2013. A local dormancy cline is related to the seed maturation environment,

population genetic composition and climate. Annals of Botany 112: 937–945.
Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of

germination. New Phytologist 171: 501–523.
Forbis TA, Floyd SK, de Queiroz A. 2002. The evolution of embryo size in

angiosperms and other seed plants: implications for the evolution of seed

dormancy. Evolution 56: 2112–2125.
Forget PM, Lambert JE, Hulme PE, Vander Wall SB. 2005. Seed fate: predation,
dispersal and seedling establishment. Wallingford, UK: CABI.

Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin

DC, Sutton-Grier AE, Williams L, Wright J. 2017. Revisiting the Holy Grail:

using plant functional traits to understand ecological processes. Biological Reviews
92: 1156–1173.

Galetti M, Guevara R, Cortes MC, Fadini R, Von Matter S, Leite AB, Labecca F,

RibeiroT,CarvalhoCS,CollevattiRG et al.2013.Functional extinctionof birds
drives rapid evolutionary changes in seed size. Science 340: 1086–1090.

Gardarin A, ColbachN, BatllaD. 2015.Howmuch of seed dormancy in weeds can

be related to seed traits?Weed Research 55: 14–25.
Gardarin A, D€urr C, ColbachN. 2012.Modeling the dynamics and emergence of a

multispecies weed seed bank with species traits. Ecological Modelling 240: 123–
138.

GioriaM, Py�sek P. 2017.Early bird catches the worm: germination as a critical step

in plant invasion. Biological Invasions 19: 1055–1080.
Gomez-Gonzalez S, Torres-Diaz C, Bustos-Schindler C, Gianoli E. 2011.

Anthropogenic fire drives the evolution of seed traits. Proceedings of the National
Academy of Sciences, USA 108: 18 743–18 747.

Gonz�alez-Varo JP, L�opez-Bao JV, Guiti�an J. 2017. Seed dispersers help plants to

escape global warming. Oikos 126: 1600–1606.
G€otzenberger L, de Bello F, Br�athen KA, Davison J, Dubuis A, Guisan A, Lep�s J,

Lindborg R, Moora M, P€artel M et al. 2012. Ecological assembly rules in plant

communities—approaches, patterns and prospects. Biological Reviews 87: 111–
127.

Gremer JR, Venable DL. 2014.Bet hedging in desert winter annual plants: optimal

germination strategies in a variable environment. Ecology Letters 17: 380–387.
Grubb PJ. 1977.Maintenance of species-richness in plant communities: the

importance of the regeneration niche. Biological Reviews of the Cambridge
Philosophical Society 52: 107–145.

Grushvitzky IV. 1967. After-ripening of seeds of primitive tribes of angiosperms,

conditions and peculiarities. In: BorrissH, ed.Physiologie, Ökologie undBiochemie
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