21 research outputs found

    Depredación por Podisus maculiventris (Say) sobre larvas de Choristoneura rosaceana (Harris)

    Get PDF
    Choristoneura rosaceana (Harris) es una plaga del manzano Malus domestica Borkh. de reciente aparición en México. Su control depende básicamente del uso de insecticidas químicos; sin embargo, existen registros de enemigos naturales de esta plaga que ejercen un control considerable. El objetivo del estudio fue evaluar la capacidad de depredación de Podisus maculiventris (Say) sobre C. rosaceana. Para lo anterior, en agosto y septiembre de 2014, se recolectaron 1200 larvas de C. rosaceana en huertos de manzano. Asimismo, se recolectaron 87 especímenes del depredador P. maculiventris, de diferentes estadios ninfales, de los cuales 75 se recolectaron en huertos de manzano y 17 en parcelas de maíz, además se recolectaron 22 grupos de huevos (17 en maíz y cinco en manzano). Se realizaron ensayos de consumo de P. maculiventris sobre larvas de C. rosaceana, donde el promedio fue de 0.72 larvas consumidas por día, siendo el primer estadio ninfal el que mostró un mayor promedio de consumo (1.9 larvas/día), en las primeras 24 h y el segundo estadio mostró el mayor promedio a los 7 días (1.2 larvas consumidas/día).Choristoneura rosaceana (Harris) es una plaga del manzano Malus domestica Borkh. de reciente aparición en México. Su control depende básicamente del uso de insecticidas químicos; sin embargo, existen registros de enemigos naturales de esta plaga que ejercen un control considerable. El objetivo del estudio fue evaluar la capacidad de depredación de Podisus maculiventris (Say) sobre C. rosaceana. Para lo anterior, en agosto y septiembre de 2014, se recolectaron 1200 larvas de C. rosaceana en huertos de manzano. Asimismo, se recolectaron 87 especímenes del depredador P. maculiventris, de diferentes estadios ninfales, de los cuales 75 se recolectaron en huertos de manzano y 17 en parcelas de maíz, además se recolectaron 22 grupos de huevos (17 en maíz y cinco en manzano). Se realizaron ensayos de consumo de P. maculiventris sobre larvas de C. rosaceana, donde el promedio fue de 0.72 larvas consumidas por día, siendo el primer estadio ninfal el que mostró un mayor promedio de consumo (1.9 larvas/día), en las primeras 24 h y el segundo estadio mostró el mayor promedio a los 7 días (1.2 larvas consumidas/día)

    Depredación por Podisus maculiventris (Say) sobre larvas de Choristoneura rosaceana (Harris)

    Get PDF
    Choristoneura rosaceana (Harris) es una plaga del manzano Malus domestica Borkh. de reciente aparición en México. Su control depende básicamente del uso de insecticidas químicos; sin embargo, existen registros de enemigos naturales de esta plaga que ejercen un control considerable. El objetivo del estudio fue evaluar la capacidad de depredación de Podisus maculiventris (Say) sobre C. rosaceana. Para lo anterior, en agosto y septiembre de 2014, se recolectaron 1200 larvas de C. rosaceana en huertos de manzano. Asimismo, se recolectaron 87 especímenes del depredador P. maculiventris, de diferentes estadios ninfales, de los cuales 75 se recolectaron en huertos de manzano y 17 en parcelas de maíz, además se recolectaron 22 grupos de huevos (17 en maíz y cinco en manzano). Se realizaron ensayos de consumo de P. maculiventris sobre larvas de C. rosaceana, donde el promedio fue de 0.72 larvas consumidas por día, siendo el primer estadio ninfal el que mostró un mayor promedio de consumo (1.9 larvas/día), en las primeras 24 h y el segundo estadio mostró el mayor promedio a los 7 días (1.2 larvas consumidas/día).Choristoneura rosaceana (Harris) es una plaga del manzano Malus domestica Borkh. de reciente aparición en México. Su control depende básicamente del uso de insecticidas químicos; sin embargo, existen registros de enemigos naturales de esta plaga que ejercen un control considerable. El objetivo del estudio fue evaluar la capacidad de depredación de Podisus maculiventris (Say) sobre C. rosaceana. Para lo anterior, en agosto y septiembre de 2014, se recolectaron 1200 larvas de C. rosaceana en huertos de manzano. Asimismo, se recolectaron 87 especímenes del depredador P. maculiventris, de diferentes estadios ninfales, de los cuales 75 se recolectaron en huertos de manzano y 17 en parcelas de maíz, además se recolectaron 22 grupos de huevos (17 en maíz y cinco en manzano). Se realizaron ensayos de consumo de P. maculiventris sobre larvas de C. rosaceana, donde el promedio fue de 0.72 larvas consumidas por día, siendo el primer estadio ninfal el que mostró un mayor promedio de consumo (1.9 larvas/día), en las primeras 24 h y el segundo estadio mostró el mayor promedio a los 7 días (1.2 larvas consumidas/día)

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Detection of Israeli Acute Paralysis Virus (IAPV) and Apis mellifera Filamentous Virus (AmFV) in Honey Bees in Mexico

    No full text
    The recent alarming loss of honey bee colonies around the world is believed to be related to the presence of viruses. The aim of this study was to detect two major viral diseases, Apis mellifera Filamentous virus (AmFV) and Israeli Acute Paralysis Virus (IAPV) using Reverse Transcription - Polymerase Chain Reaction RT-PCR, in honey bees in Mexico. Adult and larvae honey bee samples were collected from asymptomatic colonies of six major beekeeping regions in the state of Chihuahua, Mexico. Both viruses were detected in both developmental stages of honey bees, IAPV at a higher prevalence (23.5%) as compared to AmFV, only in 0.9% of samples. However, this is the first report on AmFV infection in Mexican apiaries. Further studies are required to understand the AmFV and IAPV impact on colony loss in Mexico and to develop strategies for enhancing the control of viral diseases

    Occurrence of Natural Enemies of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Chihuahua, Mexico

    No full text
    All instars of fall armyworm (FAW), Spodoptera frugiperda Smith & Abbot (Lepidoptera: Noctuidae), were collected in maize (corn) fields in 5 localities of the state of Chihuahua, Mexico, in 2014, with the main objectives of identifying its natural enemies and estimating the level of parasitism. Larvae were maintained under controlled conditions, fed with artificial diet, and observed daily until the emergence of parasitoids, until the appearance of mycosis, nematodes, or typical symptoms of baculoviral infection, or until they reached adulthood. Out of 5,870 larvae collected, 1,068 were attacked by natural enemies (parasitoids and entomopathogens), representing a total incidence of 18.2%. The incidence of parasitism by parasitoids was 8.1%, and parasitoids emerged from 5.8% of the larvae. The parasitoids found were: Chelonus insularis Cresson and Meteorus arizonensis Muesebeck (Hymenoptera: Braconidae); Campoletis sonorensis (Cameron), Campoletis flavicincta (Ashmead), Pristomerus sp. (Hymenoptera: Ichneumonidae); Euplectrus platyhypenae Howard (Hymenoptera: Eulophidae); and Lespesia sp. and Archytas marmoratus (Townsend) (Diptera: Tachinidae). Meteorus arizonensis and C. flavicincta were the most commonly encountered parasitoids, affecting 3% and 1.3% of the total collected larvae, respectively. Also, 2 species of entomopathogenic fungi were found: Metarhizium rileyi (Farl.) Kepler, S.A. Rehner & Humber comb. nov. (= Nomuraea rileyi [Farl.] Samson; Hypocreales: Clavicipitaceae) and Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), with incidences of 8.6% and 0.65%, respectively. Forty-nine nucleopolyhedrovirus (Baculoviridae) isolates were obtained, corresponding to an incidence of 0.8%. Also, 0.07% of larvae were infected by entomopathogenic nematodes. In addition to the parasitoids and pathogens obtained, 34 specimens of the predator Podisus maculiventris (Say) (Hemiptera: Pentatomidae) were found during the surveys.Se recolectaron larvas de todos los instares de gusano cogollero Spodoptera frugiperda Smith & Abbot (Lepidoptera: Noctuidae), en parcelas de maíz, en 5 localidades del estado de Chihuahua, México en el 2014, con el objetivo de identificar a sus enemigos naturales y estimar el nivel de parasitismo. Las larvas fueron mantenidas bajo condiciones controladas, alimentadas con dieta artificial, y observadas diariamente hasta la emergencia de parasitoides, la aparición de micosis, nematodos, síntomas típicos de infección viral o hasta que llegaron a la etapa adulta. De 5,870 larvas recolectadas, 1,068 fueron atacadas por enemigos naturales (parasitoides y entomopatógenos), representando una incidencia del 18.2%. La incidencia de parasitismo causada por parasitoides fue de 8.1%, y emergió el 5.8% de las larvas. Se encontraron los himenópteros parasitoides: Chelonus insularis Cresson, Meteorus arizonensis Muesebeck (Braconidae), Campoletis sonorensis (Cameron), Campoletis flavicincta (Ashmead), Pristomerus sp. (Ichneumonidae), Euplectrus platyhypenae Howard (Eulophidae), Lespesia sp. y Archytas marmoratus (Townsend) (Diptera: Tachinidae). Meteorus arizonensis y C. flavicincta fueron los parasitoides más comúnmente encontrados, afectando el 3% y 1.3%, del total de las larvas recolectadas, respectivamente. También, se encontraron 2 especies de hongos entomopatógenos: Metarhizium rileyi (Farl.) Kepler, S.A. Rehner & Humber comb. nov. (= Nomuraea rileyi [Farl.] Samson; Hypocreales: Clavicipitaceae) y Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) con incidencias de 8.6% y 0.65%, respectivamente. Se obtuvieron 49 aislados de nucleopolyhedrovirus (Baculoviridae) correspondiente a una incidencia del 0.8%. Un 0.07% de las larvas fueron infectadas por nematodos entomopatógenos. Adicionalmente, a los parasitoides y patógenos, se encontraron 34 especímenes del depredador Podisus maculiventris (Say) (Hemiptera: Pentatomidae) durante la recolecta

    Pathogenesis, Epidemiology and Variants of Melissococcus plutonius (Ex White), the Causal Agent of European Foulbrood

    No full text
    The bacterium Melissococcus plutonius is the etiologic agent of the European foulbrood (EFB), one of the most harmful bacterial diseases that causes the larvae of bees to have an intestinal infection. Although EFB has been known for more than a century and is practically present in all countries where beekeeping is practiced, the disease has been little studied compared to American foulbrood. Recently, great advances have been made to understand the disease and the interaction between the pathogen and its host. This review summarizes the research and advances to understand the disease. First, the morphological characteristics of M. plutonius, the infection process and bacterial development in the gut of the larva are described. Also, the epidemiological distribution of EFB and factors that favor the development of the disease as well as the classification of M. plutonius according its genomic and phenotype characteristics are reported. Finally, the new molecular tools for the study of M. plutonius, possible virulence factors in its genome, the issue of current EFB control measures and possible alternatives to the use of antibiotics are addressed
    corecore