133 research outputs found

    The influence of thermal cycles on the microstructure of grade 92 steel

    Get PDF
    The microstructure in the heat-affected zone (HAZ) of welds made from the 9 wt pct chromium martensitic Grade 92 steel is complex and has not yet been completely understood. There is a lack of systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds as a function of the welding process. In this study, the microstructure in the HAZ of an as-fabricated single-pass bead-on-plate weld on a parent metal of Grade 92 steel was systematically investigated by using an extensive range of electron and ion-microscopy-based techniques. A dilatometer was used to apply controlled thermal cycles to simulate the microstructures in the different regions of the HAZ. A wide range of microstructural properties in the simulated materials were then characterized and compared with the experimental observations from the weld HAZ. It was found that the microstructure in the HAZ of a single-pass Grade 92 steel weld can be categorized as a function of a decreasing peak temperature reached as (1) the completely transformed (CT) region, in which the original matrix is completely reaustenitized with complete dissolution of the pre-existing secondary precipitate particles; (2) the partially transformed (PT) region, where the original matrix is partially reaustenitized along with a partial dissolution of the secondary precipitate particles from the original matrix; and (3) the overtempered (OT) region, where the pre-xisting precipitate particles coarsen. The PT region is considered to be the susceptible area for damage in the commonly reported HAZ failures in weldments constructed from these types of steels

    Techno-Ecological Synergy: A Framework for Sustainable Engineering

    Get PDF
    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed

    Reconnecting with nature for sustainability

    Get PDF
    Calls for humanity to ‘reconnect to nature’ have grown increasingly louder from both scholars and civil society. Yet, there is relatively little coherence about what reconnecting to nature means, why it should happen and how it can be achieved. We present a conceptual framework to organise existing literature and direct future research on human–nature connections. Five types of connections to nature are identified: material, experiential, cognitive, emotional, and philosophical. These various types have been presented as causes, consequences, or treatments of social and environmental problems. From this conceptual base, we discuss how reconnecting people with nature can function as a treatment for the global environmental crisis. Adopting a social–ecological systems perspective, we draw upon the emerging concept of ‘leverage points’—places in complex systems to intervene to generate change—and explore examples of how actions to reconnect people with nature can help transform society towards sustainability

    Anthropogenically-mediated density dependence in a declining farmland bird

    Get PDF
    Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e. at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success

    Sustainable Urban Systems: Co-design and Framing for Transformation

    Get PDF
    Rapid urbanisation generates risks and opportunities for sustainable development. Urban policy and decision makers are challenged by the complexity of cities as social–ecological–technical systems. Consequently there is an increasing need for collaborative knowledge development that supports a whole-of-system view, and transformational change at multiple scales. Such holistic urban approaches are rare in practice. A co-design process involving researchers, practitioners and other stakeholders, has progressed such an approach in the Australian context, aiming to also contribute to international knowledge development and sharing. This process has generated three outputs: (1) a shared framework to support more systematic knowledge development and use, (2) identification of barriers that create a gap between stated urban goals and actual practice, and (3) identification of strategic focal areas to address this gap. Developing integrated strategies at broader urban scales is seen as the most pressing need. The knowledge framework adopts a systems perspective that incorporates the many urban trade-offs and synergies revealed by a systems view. Broader implications are drawn for policy and decision makers, for researchers and for a shared forward agenda

    Interdisciplinary and transdisciplinary research: Finding the common ground of multi-faceted concepts

    Get PDF
    Inter- and transdisciplinarity are increasingly relevant concepts and practices within academia. While various definitions exist, a clear distinction between inter- and transdisciplinarity remains difficult. Although there is a wide consensus about the need to define and apply these approaches, there is no agreement over definitions. Building on data collected during the first year of the COST Action TD1408 “Interdisciplinarity in research programming and funding cycles” (INTREPID), this paper describes both tensions and common ground about the characteristics and building blocks of interand trans-disciplinarity. Drawing on empirical data from participatory workshops involving INTREPID network members coming from 27 different countries, the paper shows that diverse definitions of inter and trans-disciplinarity coexist within scientific literature and in the mind of researchers and practitioners. The understanding about the involvement of actors outside of academia also differs widely across scientific communities irrespective of disciplinary training or the research subjects. The focus should be on the knowledge that is required to deal with a specific problem, rather than discussing “if” and “how” to integrate actors outside the academia, and collaboration should start with joint problem framing. This diversity is, however, not an absolute obstacle to practice, since the latter is made possible through building blocks such as knowledge domains, problem- and solution- oriented approaches, common goals, as well as target knowledge. In order to move towards more effective inter- and transdisciplinary research, we identify the need for trained interdisciplinarity facilitators and ‘accompanying research’ (derived from the Danish term ‘fþlgeforskning’). These two roles can be essential to inter- and transdisciplinarity practices including the promotion of reflexivity
    • 

    corecore