327 research outputs found

    Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells

    Get PDF
    Our work is focused on membraneless laminar flow fuel cells, an unconventional fuel cell technology, intended to create a system that not only avoids most typical fuel cell drawbacks, but also achieves the highest power density yet recorded for a non-H{sub 2} fuel cell. We have employed rigorous electrochemistry to characterize the high-energy- density fuel BH4-, providing important mechanistic insight for anode catalyst choice and avoiding deleterious side reactions. Numerous fuel cell oxidants, used in place of O{sub 2}, are compared in a detailed, uniform manner, and a powerful new oxidant, cerium ammonium nitrate (CAN), is described. The high-voltage BH{sub 4}{sup -}/CAN fuel/oxidant combination is employed in a membraneless, room temperature, laminar-flow fuel cell, with herringbone micromixers which provide chaotic-convective flow which, in turn, enhances both the power output and efficiency of the device. We have also been involved in the design of a scaled-up version of the membraneless laminar flow fuel cell intended to provide a 10W output

    Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Full text link
    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC)

    Adsorption Dynamics of a Phospholipase A2 onto a Mercury Electrode Surface

    Full text link

    Breaking the Crowther Limit: Combining Depth-Sectioning and Tilt Tomography for High-Resolution, Wide-Field 3D Reconstructions

    Full text link
    To date, high-resolution (< 1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (> 6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over one hundred dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability

    Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect

    Get PDF
    The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretch individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecule's spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.Comment: main text: 5 pages, 4 figures; supporting information attached; to appear in Science

    Zeolite supported Pd electrocatalyst nanoparticle characterization

    Get PDF
    © 2018 Hydrogen Energy Publications LLC A laboratory made 1.5 wt% Palladium (Pd) zeolite electrocatalyst is investigated using the Extended X-ray Adsorption Fine Structure (EXAFS) and Cyclic Voltammetry (CV) techniques to reveal Pd structure and resultant electrochemical performance. It was found that the electrochemical activity of hydrogen charger transfer in the hydride region increased for electrocatalyst with large-size particles made at high temperature of 400 °C, compared to those with small-size particles calcined and reduced at temperature below 360 °C, at which no major discrepancies were observed between catalysts of different sizes. Furthermore, Pd particle location has played an important role to enhance electrocatalyst performance. The Pd atom tends to remain at small cages, i.e. zeolite sodalite cages or hexagonal prisms at calcinations and reduction temperatures below 360 °C. When temperature increases to about 400 °C, the majority Pd atoms tend to migrate from zeolite small cages to supercages and zeolite external structures with enhanced electrochemical performance

    Experimental study of characteristics of bimetallic Pt-Fe nano-particle fuel cell electrocatalyst

    Get PDF
    © 2015 Elsevier Ltd. The characteristics of 1.5wt% Platinum (Pt) loading on Fe incorporated Y zeolite (Pt-Fe/Y zeolite) nano-electrocatalysts have been experimentally studied by the extended X-ray adsorption fine structure (EXAFS) and cyclic voltammetry (CV) techniques using Nafionat bound electrode to determine Pt electrocatalytic performance in direct methanol fuel cell. The Pt particle size was found to be small in electrochemical environment (0.7nm with 55 atoms). Study implies that the Pt electrocatalytic performance can be affected by the Pt cluster electron deficiency, due to the change of Pt particle size associated with the lattice strain energy. The CV measurement in the hydride region indicated higher Pt dispersion for Pt-Fe/Y zeolite electrocatalyst chemically reduced in H2 at 400°C (15PtFeancr4), compared to that of Pt/Y zeolite reduced at 400°C (15Ptancr4) and Pt-Fe/Y zeolite electrocatalysts reduced at 300°C (15PtFeancr3), respectively. This provided further implication that the chemical reduction temperature would be important for achieving a higher Pt dispersion. The present study has revealed two possible electron transfer pathways that might contribute to the Pt electronic conduction: (1) the surface mobility of adsorbed species; (2) the hydrogen atoms/H+ ion spillover through the zeolite framework and on the electrode surface, despite the DC insulator nature of zeolite

    Electrode roughness dependent electrodeposition of sodium at the nanoscale

    Get PDF
    Na metal is an attractive anode material for rechargeable Na ion batteries, however, the dendritic growth of Na can cause serious safety issues. Along with modifications of solid-electrolyte interphase (SEI), engineering the electrode has been reported to be effective in suppressing Na dendritic growth, likely by reducing localized current density accumulation. However, fundamental understanding of Na growth at the nanoscale is still limited. Here, we report an in-situ study of Na electrodeposition in electrochemical liquid cells with the electrodes in different surface roughness, e.g., flat or sharp curvature. Real time observation using transmission electron microscopy (TEM) reveals the Na electrodeposition with remarkable details. Relatively large Na grains (in the micrometer scale) are achieved on the flat electrode surface. The local SEI thickness variations impact the growth rate, thus the morphology of individual grains. In contrast, small Na grains (in tens of nanometers) grow explosively on the electrode at the point with sharp curvature. The newly formed Na grains preferentially deposit at the base of existing grains close to the electrode. Further studies using continuum-based computational modeling suggest that the growth mode of an alkali metal (e.g. Na) is strongly influenced by the transport properties of SEI. Our direct observation of Na deposition in combination with the theoretical modeling provides insights for comprehensive understanding of electrode roughness and SEI effects on Na electrochemical deposition

    Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen

    Get PDF
    The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed as a viable approach for generating hydrogen, provided that stable and inexpensive photocatalysts with conversion efficiencies over 10% can be discovered, synthesized at scale, and successfully deployed (Pinaud et al., Energy Environ. Sci., 2013, 6, 1983). While a number of first-principles studies have focused on the data-driven discovery of photocatalysts, in the absence of systematic experimental validation, the success rate of these predictions may be limited. We address this problem by developing a screening procedure with co-validation between experiment and theory to expedite the synthesis, characterization, and testing of the computationally predicted, most desirable materials. Starting with 70 150 compounds in the Materials Project database, the proposed protocol yielded 71 candidate photocatalysts, 11 of which were synthesized as single-phase materials. Experiments confirmed hydrogen generation and favorable band alignment for 6 of the 11 compounds, with the most promising ones belonging to the families of alkali and alkaline-earth indates and orthoplumbates. This study shows the accuracy of a nonempirical, Hubbard-corrected density-functional theory method to predict band gaps and band offsets at a fraction of the computational cost of hybrid functionals, and outlines an effective strategy to identify photocatalysts for solar hydrogen generation
    • …
    corecore