177 research outputs found

    Valence change of praseodymium in Pr0.5Ca0.5CoO3 investigated by x-ray absorption spectroscopy

    Get PDF
    X-ray absorption spectroscopy measurements in Pr0.5Ca0.5CoO3 were performed at the Pr M4,5, Pr L3, and Ca L2,3 absorption edges as a function of temperature below 300 K. Ca spectra show no changes down to 10 K while a noticeable thermally dependent evolution takes place at the Pr edges across the metal-insulator transition. Spectral changes are analyzed by different methods, including multiple scattering simulations, which provide quantitative details on an electron loss at Pr 4f orbitals. We conclude that in the insulating phase a fraction [15(+5)%] of Pr3+ undergoes a further oxidation to adopt a hybridized configuration composed of an admixture of atomic-like 4f1 states (Pr4+) and f- symmetry states on the O 2p valence band (Pr3+L states) indicative of a strong 4f- 2p interaction.Comment: 19 pages (.doc), 4 figures, Phys. Rev. B, in pres

    Observation of a valence transition in (Pr,Ca)CoO3 cobaltites: charge migration at the metal-insulator transition

    Get PDF
    X-ray absorption spectroscopy measurements in Pr0.5Ca0.5CoO3 and (Pr,Y)0.55Ca0.45CoO3 compositions reveal that the valence of praseodymium ions is stable and essentially +3 (Pr [4f 2]) in the metallic state, but abruptly changes when carriers localize approaching the oxidation state +4 (Pr [4f 1]). This mechanism appears to be the driving force of the metal-insulator transition. The ground insulating state of Pr0.5Ca0.5CoO3 is an homogeneous Co3.5-d state stabilized by a charge transfer from Pr to Co sites: 1/2Pr3+ + Co3.5 \to 1/2Pr3+2d + Co3.5-d, with 2d \approx 0.26 e-.Comment: Submitted. 14 pages, 4 Figure

    The impact of resource dependence of the mechanisms of life on the spatial population dynamics of an in silico microbial community

    Get PDF
    Biodiversity has a critical impact on ecosystem functionality and stability, and thus the current biodiversity crisis has motivated many studies of the mechanisms that sustain biodiversity, a notable example being non-transitive or cyclic competition. We therefore extend existing microscopic models of communities with cyclic competition by incorporating resource dependence in demographic processes, characteristics of natural systems often oversimplified or overlooked by modellers. The spatially explicit nature of our individual-based model of three interacting species results in the formation of stable spatial structures, which have significant effects on community functioning, in agreement with experimental observations of pattern formation in microbial communities. Published by AIP Publishing

    VOCE Corpus: Ecologically Collected Speech Annotated with Physiological and Psychological Stress Assessments.

    Get PDF
    Public speaking is a widely requested professional skill, and at the same time an activity that causes one of the most common adult phobias (Miller and Stone, 2009). It is also known that the study of stress under laboratory conditions, as it is most commonly done, may provide only limited ecological validity (Wilhelm and Grossman, 2010). Previously, we introduced an inter-disciplinary methodology to enable collecting a large amount of recordings under consistent conditions (Aguiar et al., 2013). This paper introduces the VOCE corpus of speech annotated with stress indicators under naturalistic public speaking (PS) settings. The novelty of this corpus is that the recordings are carried out in objectively stressful PS situations, as recommended in (Zanstra and Johnston, 2011). The current database contains a total of 38 recordings, 13 of which contain full psychological and physiologic annotation. We show that the collected recordings validate the assumptions of the methodology, namely that participants experience stress during the PS events. We describe the various metrics that can be used for physiologic and psychological annotation, and we characterise the sample collected so far, providing evidence that demographics do not affect the relevant psychological or physiologic annotation. The collection activities are on-going, and we expect to increase the number of complete recordings in the corpus to 30 by June 2014

    Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome.

    Get PDF
    Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, but devastating genetic disease characterized by segmental premature aging, with cardiovascular disease being the main cause of death. Cells from HGPS patients accumulate progerin, a permanently farnesylated, toxic form of Lamin A, disrupting the nuclear shape and chromatin organization, leading to DNA-damage accumulation and senescence. Therapeutic approaches targeting farnesylation or aiming to reduce progerin levels have provided only partial health improvements. Recently, we identified Remodelin, a small-molecule agent that leads to amelioration of HGPS cellular defects through inhibition of the enzyme N-acetyltransferase 10 (NAT10). Here, we show the preclinical data demonstrating that targeting NAT10 in vivo, either via chemical inhibition or genetic depletion, significantly enhances the healthspan in a Lmna G609G HGPS mouse model. Collectively, the data provided here highlights NAT10 as a potential therapeutic target for HGPS

    Underground Environment Aware MIMO Design Using Transmit and Receive Beamforming in Internet of Underground Things

    Get PDF
    In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of freedom of the UG MIMO interference channel. The underground receiver needs to perfectly cancel the interference from the three different components of the EM-waves propagating in the soil medium. This concept is based upon reducing the interference the undesired components to minimum at UG receiver using the receive beamforming. In this paper, underground environment aware MIMO using transmit and receive beamforming has been developed. The optimal transmit beamforming and receive combin- ing vectors under minimal inter-component interference constraint are derived. It is shown that UG MIMO performs best when all three component of the wireless UG channel are leveraged for beamforming. The environment aware UG MIMO technique leads to three-fold performance improvements and paves the wave for design and development of next generation sensor-guided irrigation systems in the field of digital agriculture

    Controlled Magnetic Anisotropy in Single Domain Mn-doped Biosynthesized Nanoparticles

    Get PDF
    Magnetotactic bacteria Magnetospirillum gryphiswaldense synthesize cubo-octahedral shaped magnetite nanoparticles, called magnetosomes, with a mean diameter of 40 nm. The high quality of the biosynthesized nanoparticles makes them suitable for numerous applications in fields like cancer therapy, among others. The magnetic properties of magnetite magnetosomes can be tailored by doping them with transition metal elements, increasing their potential applications. In this work, we address the effect of Mn doping on the main properties of magnetosomes by the combination of structural and magnetic characterization techniques. Energy-dispersive X-ray spectroscopy, X-ray absorption nearedge structure, and X-ray magnetic circular dichroism results reveal a Mn dopant percentage of utmost 2.3%, where Mn cations are incorporated as a combination of Mn2+ and Mn3+, preferably occupying tetrahedral and octahedral sites, respectively. Fe substitution by Mn notably alters the magnetic behavior of the doped magnetosomes. Theoretical modeling of the experimental hysteresis loops taken between 5 and 300 K with a modified Stoner-Wohlfarth approach highlights the different anisotropy contributions of the doped magnetosomes as a function of temperature. In comparison with the undoped magnetosomes, Mn incorporation alters the magnetocrystalline anisotropy introducing a negative and larger cubic anisotropy down to the Verwey transition, which appears shifted to lower temperature values as a consequence of Mn doping. On the other hand, Mn-doped magnetosomes show a decrease in the uniaxial anisotropy in the whole temperature range, most likely associated with a morphological modification of the Mn-doped magnetosomes.The Spanish and Basque Governments are acknowledged for funding under project numbers MAT2017- 83631-C3-R and IT-1245-19, respectively

    On the Security of Carrier Phase-based Ranging

    Get PDF
    Multicarrier phase-based ranging is fast emerging as a cost-optimized solution for a wide variety of proximity-based applications due to its low power requirement, low hardware complexity and compatibility with existing standards such as ZigBee and 6LoWPAN. Given potentially critical nature of the applications in which phase-based ranging can be deployed (e.g., access control, asset tracking), it is important to evaluate its security guarantees. Therefore, in this work, we investigate the security of multicarrier phase-based ranging systems and specifically focus on distance decreasing relay attacks that have proven detrimental to the security of proximity-based access control systems (e.g., vehicular passive keyless entry and start systems). We show that phase-based ranging, as well as its implementations, are vulnerable to a variety of distance reduction attacks. We describe different attack realizations and verify their feasibility by simulations and experiments on a commercial ranging system. Specifically, we successfully reduced the estimated range to less than 3 m even though the devices were more than 50 m apart. We discuss possible countermeasures against such attacks and illustrate their limitations, therefore demonstrating that phase-based ranging cannot be fully secured against distance decreasing attacks
    • 

    corecore