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Underground Environment Aware MIMO Design
Using Transmit and Receive Beamforming in
Internet of Underground Things

Abdul Salam

Department of Computer and Information Technology
Purdue University, USA
salama@purdue.edu

Abstract. In underground (UG) multiple-input and multiple-output
(MIMO), the transmit beamforming is used to focus energy in the de-
sired direction. There are three different paths in the underground soil
medium through which the waves propagates to reach at the receiver.
When the UG receiver receives a desired data stream only from the de-
sired path, then the UG MIMO channel becomes three path (lateral,
direct, and reflected) interference channel. Accordingly, the capacity re-
gion of the UG MIMO three path interference channel and degrees of
freedom (multiplexing gain of this MIMO channel requires careful mod-
eling). Therefore, expressions are required derived the degrees of freedom
of the UG MIMO interference channel. The underground receiver needs
to perfectly cancel the interference from the three different components
of the EM-waves propagating in the soil medium. This concept is based
upon reducing the interference the undesired components to minimum at
UG receiver using the receive beamforming. In this paper, underground
environment aware MIMO using transmit and receive beamforming has
been developed. The optimal transmit beamforming and receive combin-
ing vectors under minimal inter-component interference constraint are
derived. It is shown that UG MIMO performs best when all three com-
ponent of the wireless UG channel are leveraged for beamforming. The
environment aware UG MIMO technique leads to three-fold performance
improvements and paves the wave for design and development of next
generation sensor-guided irrigation systems in the field of digital agricul-
ture.

Keywords: Digital Agriculture; Wireless Underground Channel; Un-
derground Communications; MIMO; Beamforming; Internet of Under-
ground Things

1 Introduction

Internet of Underground Things (IOUT) have many applications in precision
agriculture [1], [2], [5], [8], [10], [11], [12], [14], [15], [23], [25], [29], [21], [20], [22],
[24], [16], [17], [18], [19], [34], [35], [36]. Border monitoring is another important
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Fig. 1. An example power delay profile (PDP) of the impulse response model of the
wireless UG channel [28].

application area of IOUT, where these networks are being used to enforce border
and stop infiltration [3], [32]. Monitoring applications of IOUT include land slide
monitoring, and pipeline monitoring [10], [33], [30], [31]. IOUT provides seam-
less access of information collected from agricultural fields through the Internet.
IOUT include in situ soil sensing capabilities (e.g., soil moisture, temperature,
salinity), and provide the ability to communicate through plants and soil, and
real-time information about the environment (e.g., wind, rain, solar). When in-
terconnected with existing machinery on the field (seeders, irrigation systems,
combines), IOUT enable complete autonomy on the field, and pave the way for
more efficient food production solutions. At agricultural farm level, IOUTs are
being used to provide valuable information to the farmers.

UG transmit beamforming using phased array antennas at the transmitter
[26] has been used in the underground (UG) communications to maximize the
lateral wave [28] by transmitting energy at a particular angle. By using this ap-
proach, the energy wastage by sending signals in isotropic direction is reduced
by forming the narrow-width beam and steering it accordingly. In underground
wireless communications, the aim is to enhance the received signal strength and
reduce the interference at the receiver. In over the air (OTA) wireless commu-
nications, a strong signal strength is attained by transmitting the signal from
multiple antennas by different amplitudes and phases. Through this approach,
the received signal components add coherently at the receiver. However, in un-
derground communication due to different wave propagation speed in different
communication mediums (e.g., soil and air), coherent combining at the receiver
in a constructive manner can not be achieved. Therefore, an environment aware
UG multiple-input and multiple-output (MIMO) design is required.
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The line-of-sight (LoS) component between the UG transmitter and receiver
has limitations because of the higher attenuation in the soil medium. An ex-
ample power delay profile (PDP) of wireless UG channel is shown in Fig. 1.
Moreover, the direct path has shorter range and can not be used to reach at
longer distances in the underground medium. Therefore, combined transmit and
receive beamforming needs developed using non-LoS components (e.g., lateral
and reflected). Since, multipath underground channel well-known [28] and has
been studied and empirically validated, UG MIMO can be developed for high
data rate and log range communications. In this work, techniques have been de-
veloped to maximize the signal strength and minimizing the interference at the
receiver. Moreover, UG MIMO beamforming expressions have been developed
to maximize the capacity of the underground communications.

The rest of the paper is organized as follows: the background and major
contributions of this work are discussed in Section 2. The UG MIMO is modeled
in Section 3. Performance evaluations are done in Section 4. The article concludes
in Section 5.

2 Contributions of This Work

This is the first work to design a fully UG MIMO for the UG communications.
The transmit and receive beamforming techniques are considered which com-
municate through the soil by using UG channel medium. Based on the receiver
position, EM waves either travel completely through soil for UG communications
or some part of it goes through the air for aboveground(AG) communications.

We leverage an UG channel impulse response model for UG beamforming
perspective and identify the major EM wave components. Challenges in UG
beamforming are highlighted and use of of UG MIMO is motivated. We present
the effects of different soil properties on beamforming vectors of the transmitter
and receiver. This proposed mechanism estimates the best beam steering angle
based on the soil moisture sensing.

We have considered an UG MIMO transceiver system where both transmitter
and receiver has the beamforming capability. Additionally, this approach removes
the inter-component interference and enhance the received signal strength. Un-
derground environment aware MIMO using transmit and receive beamforming is
vital to increased spectral efficiency, enhance communication range, and energy
efficiency in next-generation wireless underground networks, which are expected
to include underground antenna arrays [26]. UG MIMO approach has potential
applications in many practical scenarios such as precision agriculture, ground
penetrating radars (GPR), hazardous object search, locating IEDs, transmis-
sion structures under the runways for aircraft communications, antennas for
geographic research, communications from marshes, geology, and wireless un-
derground sensor networks (WUSNS).
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Fig. 2. The communications schematic for UG MIMO.

3 The UG MIMO System Models

The underground nodes communicate with other underground nodes (UG2UG
link) and above ground nodes (UG2AG link). Communications schematic for
UG MIMO communications is shown in Figs. 2. These aboveground nodes are
fixed sinks and mobile nodes mounted on movable infrastructures such as center
pivot. In aboveground communications, waves propagating to receiver nodes are
refracted from soil-air interface, whereas in UG communications, lateral waves
need to be utilized. Desired beam patterns for both scenarios are shown in Figs. 2.
In Fig. 2(a), that refractions and reflections of EM waves from the soil-air inter-
face effect the beam patterns propagating to the above-ground node.

In UG MIMO, transmit beamforming [26] is used to focus energy in the
desired direction, there are three different paths [28] in the underground soil
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medium through which the waves propagates to reach at the receiver. When
the UG receiver receives a desired data stream only from the desired path, then
the UG MIMO channel becomes three path (lateral, direct, and reflected) inter-
ference channel. Accordingly, the capacity region of the UG MIMO three path
interference channel and degrees of freedom (multiplexing gain of this MIMO
channel requires careful modeling. Therefore, expressions are required derived
the degrees of freedom of the UG MIMO interference channel.

The underground receiver needs to perfectly cancel the interference from the
three different components of the EM-waves propagating in the soil medium.
in UG transmit beamforming, limited number of antenna can only achieve low
spatial directivity, that leads to presence of signals in undesired direction that
cause interference at the receiver. This UG MIMO concept is based upon reduc-
ing the interference the undesired components to minimum at UG receiver using
the receive beamforming. In this paper, underground environment aware MIMO
using transmit and receive beamforming has been developed. The optimal trans-
mit beamforming and receive combining vectors under minimal inter-component
interference constraint are derived. Accordingly, UG MIMO techniques are de-
signed and investigated in the underground soil medium. Next we present the
system model:

We consider an UG MIMO transceiver system where both transmitter and
receiver has the beamforming capability. We also consider that the transmitter
node is equipped with two or more transmit antennas and has the beam steering
capacity. The receiver node is also equipped with multiple antennas and can
receive all three components propagating through underground medium. In this
paper, we also assume that the UG MIMO receiver has path selection and switch-
ing capability through a selection mechanism which is based on the strength of
the received paths at the receiver. Throughout the development of this approach,
we also assume equal power allocation at the UG MIMO transmitter. To ana-
lyze the achievable capacity using environment aware MIMO using transmit and
receive beamforming, we also assume a total power constraint.

Next, we present a zero forcing (ZF) UG MIMO transceiver technique. This
approach does not requires the availability of the channel state at the receiver
in contrast to the OTA MIMO techniques. Additionally, this approach removes
the inter-component interference and enhance the received signal strength. The
channel between the underground transmitter T and underground receiver R
is represented by TR of size N; x N, with complex values, where N; and
N, represents the number of transmit and receive antennas, respectively. The k
spatial underground components are distinguished using the wq, . . . , w, where
w is associated with component. A N; x N, matrix Iy denotes the interference
between different components. The received signal at the underground receiver
by using equal power constraint is given by [6]:

yr =wi, TR £ o +wi I £ = + wij, ng (1)
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where xj is the transmitted signal of the UG component k, and wy and fj
are the transmit and receive beamforming vectors, ny, is additive white Gaussian
noise (AWGN) vector.

Next, we present the expression to maximize the capacity for the low SNR
case. From the (1), the received SINR at the UG receiver at the kth component
can be expressed as:

Wi fk fk + TR TR” WZ (2>

SINRy, =

The achievable capacity for the three underground EM components is defined
as:

3
C = log,(1+ SINRy) (3)
k=1

Since the objective of this approach is to enhance the channel gain and to
remove the inter-component interference, we have only considered the beamform-
ing vectors under the lower bound of achievable capacity. Therefore, maximum
rate is not achieved because only the product achievable rate is utilized. Next
we present the approach to completely remove the inter-component interference.
The the instantaneous SNR for every sensed component can be defined as follows
when the receive beamforming is not employed at [27]:

Ey|hy|?
P = T, 4
¥ N, (4)

where i represents the L, D, or R components. The FE} is the energy per bit and
the |h;| denotes the impulse response.
A three fold increase in SNR (in comparison to a single antenna match fil-

ter based design) can be achieved by employing the maximum ratio combining
(MRC) approach [13,7?]:

Ebhi2
v= Y w L, (5)

where w; is the weighting factor used for combining. Although SISO approach
can be used to maximize the gain, but the reflected components still cause some
interference. Therefore, in order to eliminate the undesired interference, the UG
MIMO uses transmit beamforming vectors. Accordingly, the received signal can
be expressed as [6]:

yk:w,’; TR £ xk—l—WZ I, f; z;, + W;: ng (6)

w; TR £,z wi I £ x; Wy N (7)
|TR £]| TR ]| [ITR ;|

Yk =
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To completely eliminate the interference from (7), MRC approach should
satisfy following:

that can be satisfied by using the transmit beamforming vector. Using this
zero interference constraint, MRC beamforming vectors are generalized eigen-
vectors.

In addition to environment aware weights of UG MIMO, which are based on
soil moisture sensing, feedback signals are used to adjust the weights by using
the array gain feedback loops. This problem is formulated as maximizing the
array gain by using the pilot signals. In this method, UG MIMO array at the
transmitter receives the pilot signal in receive mode and then accordingly adjusts
its parameters for the transmit mode. In receive mode at the transmitter, scan
angles are varied to get the estimate of channel state. The best SNR statistics
are used and with change in soil moisture, parameters are adjusted accordingly.

For an array of identical elements, the far-field power density is expressed as
[9]:

_|E@®,9))?

P =
den 1207 ) (9)

where E(0, ¢) is the electric filed intensity of the individual array element and
is given as:

E6.0) = v/Par/Ger V20, (10

where P.;, G¢; are element transmit power and gain, respectively, and d is the
distance. E-field contributions (F,) from all elements are added together to
calculate the array gain G, [9]. Therefore,

_ d*|Ea (8, 9)]?

Ga(gv ¢) - 30 Pt )

(11)

where ¢ is the element phase factor and
V30
Ea:TZ\/Pet\/Get (12)

The received power at the receiver is presented next. Effective isotropic ra-
diated power (EIRP) can be expressed as product of the transmitted power and
antenna gain:

P’r‘ad = GtPt7 (13)

where P; is the transmitted power and Gy is the array gain.
The far-field power density P,, can is expressed as [7]:

P,, = PP + PR pL (14)
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Fig. 3. A realization of the UG channel model with three components.

where D, R, L denotes the power densities of the direct, reflected and lateral
component [28]. The received power is calculated as the product of far-field power
density P,, and antenna aperture (A?/47). The received power is given as [7]:

PY = P, +201logyo A\s — 201og o 71 — 8.69,7

—22 +10log,y Dy ,
P’ = P, +20logy As —201ogy 2 — 8.69572

+20log;o I" — 22 + 10log, Dy (15)
PE = P, 4 20log,o As — 401og,o d — 8.69cs (s + hy.)

+20log,o T — 22 + 10log, Dy ,

where I' and T are reflection and transmission coefficients [7], and A; is the
wavelength in soil. The received power, for an isotropic antenna, is expressed as
[7]:

prd Pl pL
P, =10log;o(10T0 + 107 + 107 ) . (16)

4 Performance Analysis

In this section, we present the performance analysis of the UG MIMO. First, the
model evaluations and results of the transmit beamforming are presented in the
next section.

4.1 Transmit Beamforming

To evaluate the developed scheme, we consider the transmit MMSE, ZFBF, and
MRT beamforming of [4]. The implementation of the heuristic beamforming
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schemes (MRT, ZFBF, transmit MMSE /regularized ZFBF /SLNR-MAX beam-
forming, and the corresponding power allocation) is also based on the [4]. For
the UG MIMO application, instead of randomly generating OTA channels, we
use the UG channel impulse response [28], where root mean square (RMS) delay
spread, distribution of the RMS delay spread, mean amplitude across multiple
profiles for a fixed T-R displacement, effects of soil moisture on peak amplitudes
of power delay profiles, mean access delay, and coherence bandwidth statistics
are presented based on the measured data collected from UG channel experi-
ments. A realization of the UG channel model is shown in Fig. 3. It is important
to note here that the calculation of optimal beamforming is not performed in
this work because of its computational complexity. The range of the considered
SNR values is —10dB to 30dB.

For the simulations, the beamforming matrices are generated for sum rates
with different beamforming strategies (e.g., MRT, ZFBF, transmit MMSE /regularized
ZFBF /SLNR-MAX). Accordingly, UG MIMO evaluation is done for different
paths of the underground channel. The direct, lateral, and the reflected paths
of the underground channel are considered. After the channel matrices are gen-
erated for all realizations, accordingly, for each realization normalized beam-
forming matrices are computed for each approach. Furthermore, by using the
branch-reduce-and-bound (BRB) algorithm, based on the proposed approach,
pre-allocate matrix serves as the feasible starting points for the BRB algorithm.

Accordingly, the system iterates through all powers. Due to its dependancy
on the transmit power, the normalized beamforming vectors for transmit MMSE
beamforming (which is the same as regularized ZFBF and SLNR-MAX beam-
forming) are also computed similarly. The sum rate is calculated accordingly for
the three different beamforming approaches.

Next, we present the evaluations done using these beamforming approaches
for the three different components. In Figs. 4, the average sum rate (bit/channel
use) is shown as a function of change in average SNR. The case in which only
the single (direct) element is considered is shown in Fig. 4(a). It can be observed
that the average sum rate range is 1.5 to 1.7 and it does not change significantly
with change in average SNR. Because, in the case of single component, there is
no beamforming involved. Therefore, all three approaches have the same avergae
sum rate.

In Fig. 4(b), the average sum rate for the direct and reflected components
(two component case) is shown. In comparison to the single path scenario, it
can be observed that average sum rate has increased from 1.6 to 3.1 at the
average SNR value of 10dB. Moreover, for the two component case, it can also
be observed that the at the lower average SNR of 0dB, there is only minor
difference of 0.1 average sum rate between the three beamforming approaches. At
the average SNR of 10dB, the difference between ZFBF and MMSE is increased
to 0.7, which shows that the UG MIMO approach has the better performance as
compared to the ZFBF. This difference further increases with increase in SNR
which shows that in higher SNR regimes, the UG MIMO transmission approach
leads to even improved performance gain.
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This better performance of the UG MIMO transmit beamforming improves
further in the three component scenario where all three components (e.g., direct,
lateral, and reflected) are used transmit beamforming. This scenario has been
shown in Fig. 4(c). Overall, the three components beamforming scenario leads
to significant performance improvements as compared to the two path transmit
beamforming case. In comparison to the two path scenario, it can be observed
that average sum rate has increased from 3.1 to 6.6 at the average SNR value of
10dB. Moreover, for the three component case, it can also be observed that even
the at the lower average SNR of 0dB, there are minor difference of average sum
rate between the three beamforming approaches. At the average SNR of 10dB,
the difference between ZFBF and MMSE is increased to 2.7. It is also interesting
to note that at the average SNR of 30dB, the average sum rate reached at the
maximum value of 8.4 which shows that the UG MIMO approach performs best
when all three components are used for underground transmit beamforming.

4.2 Receive Beamforming

For the receive beamforming of the UG MIMO, a 16-element uniform linear array
with inter-element distance of half wavelength is used. The operation frequency
of 300 MHz is employed. In underground communications, a higher path loss is
observed at higher frequencies [28]. The soil has higher permittivity as compared
to the air, which leads to the wavelength shortening. Due to the soil permittivity
factor, frequency bands in lower spectrum are more suitable for long range com-
munications. Moreover, distance, depth, and soil water content also affects the
path loss in underground communications, which requires environment-aware
operation frequency selection.

We consider the reception of the received signal through the UG MIMO re-
ceive beamforming. In UG communications, there are three main components
(e.g. direct, lateral, and reflected (see Fig. 5). The received signal that originates
from 10-15° azimuth has the highest received power. The UG channel has excess
delays extending up to 100 ns and root mean square (RMS) delay spread values
up to 50ns. The attenuation varies over 50 dB dynamic range. The direct wave
(second received signal) is received from 90° azimuth (direct path, line-of-sight
component). It is also known that arrival time of multipath components follows
lateral wave based 3-wave UG channel model such that the direct wave reaches
at the receiver first before the lateral and reflected components for shorter com-
munication distances [28]. The third wave (the reflected signal) travels towards
to the soil-air interface and reaches at the receiver from 45° azimuth. Its total
path is also completely through the soil.

The three received signals at the UG MIMO receiver are not correlated with
each other and can be distinguished because of different propagation speed in
the stratified soil medium. This leads to different inter-element delays that assist
different these elements in time. The uniform white noise is considered across all
array elements. A beam-scan spatial spectrum estimator is used based on the
arrival directions of these three components of the underground channel impulse
response.
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In Fig. 6, the spatial spectrum of the three components in the UG MIMO
receive beamforming is shown. The plot shows a high power gains at 10° which
corresponds to the lateral wave. The lower power gain is exhibited at the 90,
which represents the direct wave. The lower peak at the 45° indicates the re-
flected wave that due to the lower path in the soil has the lowest gain.

5 Conclusions

In this paper, an UG MIMO technique is developed for transmit and receive
beamforming in the underground soil medium. The optimal transmit beam-
forming and receive combining vectors under minimal inter-component inter-
ference constraint are derived. It is shown that UG MIMO performs best when
all three component of the wireless UG channel are leveraged for beamforming.
The environment aware UG MIMO technique leads to three-fold performance
improvements and paves the wave for design and development of next generation
sensor-guided irrigation systems in the field of digital agriculture.
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