190 research outputs found

    Yield and Woody Biomass Traits of Novel Shrub Willow Hybrids at Two Contrasting Sites

    Get PDF
    Shrub willow has great potential as a dedicated bioenergy crop, but commercialization and adoption by growers and end-users will depend upon the identification and selection of high-yielding cultivars with biomass chemistry and quality amenable to conversion to biofuels and bioenergy. In this study, critical traits for biomass production were evaluated among new genotypes of shrub willow produced through hybrid breeding. This study assessed the variation in yield, pest and disease resistance, biomass composition, and wood density in shrub willow, as well as the impact of genotypic and environmental factors on these particular phenotypes. Analysis of clonal genotypes established on two contrasting sites in New York State, Tully and Belleville, showed statistical differences by site for all of the traits. The greatest yield was observed at Belleville, NY, for two cultivars, ‘Fish Creek' (41Mg ha−1) and ‘Onondaga' (40Mg ha−1). Yields of Salix eriocephala genotypes were lowest, and they displayed susceptibility to rust and beetle damage. Variation in cellulose content in the stem biomass was controlled by environmental factors, with the majority of the genotypes displaying greater cellulose content at Belleville compared with Tully. In contrast, wood density was significantly greater at Tully than Belleville, and cellulose content was correlated with wood density. There were no significant correlations between biomass yield and density or any of the composition traits. These trials demonstrate that new genotypes produce improved yield and pest and disease resistance, with diverse compositional traits that can be matched with conversion technologie

    Willow Cultivars

    Get PDF
    The State University of New York College of Environmental Science and Forestry (SUNY-ESF) presents fact sheets on Salix purpurea ‘Allegany’, Salix sachalinensis × S. miyabeana ‘Canastota’, Salix purpurea ‘Fish Creek’, Salix purpurea × S. miyabeana ‘Millbrook’, Salix purpurea × S. miyabeana ‘Oneida’, Salix purpurea ‘Onondaga’, Salix viminalis × S. miyabeana ‘Otisco’, Salix viminalis × S. miyabeana ‘Owasco’, Salix eriocephala ‘S25’, Salix caprea hybrid ‘S365’, Salix sachalinensis × S. miyabeana ‘Sherburne’, Salix × dasyclados ‘SV1’, Salix sachalinensis ‘SX61’, Salix miyabeana ‘SX64’, Salix miyabeana ‘SX67’, Salix viminalis × S. miyabeana ‘Tully Champion’

    NYSDOT Living Snow Fence Training

    Get PDF
    New York State Department of Transportation (NYSDOT) Living Snow Fences Training: challenges, structure, benefits, costs, limitations, economics, transport, effects, development, growth, design, conditions, site assesmen

    NYSDOT Living Snow Fence Training Program 2012

    Get PDF
    New York State Department of Transportation (NYSDOT) Snow Fence Training: plant selection, growth, effects, characteristics, change, site selection, site preparation, existing vegetation, weed control, barriers, root stock, post plant care, limitation

    Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis

    Get PDF
    SummaryEosinophils are now recognized as multifunctional leukocytes that provide critical homeostatic signals to maintain other immune cells and aid tissue repair. Paradoxically, eosinophils also express an armory of granule-localized toxins and hydrolases believed to contribute to pathology in inflammatory disease. How eosinophils deliver their supporting functions while avoiding self-inflicted injury is poorly understood. We have demonstrated that cystatin F (CF) is a critical survival factor for eosinophils. Eosinophils from CF null mice had reduced lifespan, reduced granularity, and disturbed granule morphology. In vitro, cysteine protease inhibitors restored granularity, demonstrating that control of cysteine protease activity by CF is critical for normal eosinophil development. CF null mice showed reduced pulmonary pathology in a model of allergic lung inflammation but also reduced ability to combat infection by the nematode Brugia malayi. These data identify CF as a “cytoprotectant” that promotes eosinophil survival and function by ensuring granule integrity.Video Abstrac

    From little things, big things grow: trends and fads in 110 years of Australian ornithology

    Full text link
    Publishing histories can reveal changes in ornithological effort, focus or direction through time. This study presents a bibliometric content analysis of Emu (1901–2011) which revealed 115 trends (long-term changes in publication over time) and 18 fads (temporary increases in publication activity) from the classification of 9,039 articles using 128 codes organised into eight categories (author gender, author affiliation, article type, subject, main focus, main method, geographical scale and geographical location). Across 110 years, private authorship declined, while publications involving universities and multiple institutions increased; from 1960, female authorship increased. Over time, question-driven studies and incidental observations increased and decreased in frequency, respectively. Single species and ‘taxonomic group’ subjects increased while studies of birds at specific places decreased. The focus of articles shifted from species distribution and activities of the host organisation to breeding, foraging and other biological/ecological topics. Site- and Australian-continental-scales slightly decreased over time; non-Australian studies increased from the 1970s. A wide variety of fads occurred (e.g. articles on bird distribution, 1942–1951, and using museum specimens, 1906–1913) though the occurrence of fads decreased over time. Changes over time are correlated with technological, theoretical, social and institutional changes, and suggest ornithological priorities, like those of other scientific disciplines, are temporally labil

    U.S. Billion-ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Get PDF
    The Report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology. In the 2005 BTS, a strategic analysis was undertaken to determine if U.S. agriculture and forest resources have the capability to potentially produce at least one billion dry tons of biomass annually, in a sustainable manner—enough to displace approximately 30% of the country’s present petroleum consumption. To ensure reasonable confidence in the study results, an effort was made to use relatively conservative assumptions. However, for both agriculture and forestry, the resource potential was not restricted by price. That is, all identified biomass was potentially available, even though some potential feedstock would more than likely be too expensive to actually be economically available. In addition to updating the 2005 study, this report attempts to address a number of its shortcoming
    corecore