2,356 research outputs found

    Precession and Nutation in the eta Carinae binary system: Evidences from the X-ray light curve

    Full text link
    It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs, have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with amplitude of about 5 degrees and period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.Comment: 9 pages, 8 figures, MNRAS accepte

    Detection of high-velocity material from the wind-wind collision zone of Eta Carinae across the 2009.0 periastron passage

    Get PDF
    We report near-IR spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using VLT/CRIRES. We detect a strong, broad absorption wing in He I 10833 extending up to -1900 km/s across the 2009.0 spectroscopic event. Archival HST/STIS ultraviolet and optical data shows a similar high-velocity absorption (up to -2100 km/s) in the UV resonance lines of Si IV 1394, 1403 across the 2003.5 event. UV lines from low-ionization species, such as Si II 1527, 1533 and C II 1334, 1335, show absorption up to -1200 km/s, indicating that the absorption with v from -1200 to -2100 km/s originates in a region markedly faster and more ionized than the nominal wind of the primary star. Observations obtained at the OPD/LNA during the last 4 spectroscopic cycles (1989-2009) also display high-velocity absorption in He I 10833 during periastron. Based on the OPD/LNA dataset, we determine that material with v < -900 km/s is present in the phase range 0.976 < phi < 1.023 of the spectroscopic cycle, but absent in spectra taken at phi < 0.947 and phi > 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We suggest that the high-velocity absorption originates from shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. Using 3-D hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is in the line-of-sight to the primary star only if the binary system is oriented in the sky so that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of omega ~ 240 to 270 degrees. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i=40 to 60 degrees.Comment: 18 pages, 15 figures, accepted for publication in A&A; high-resolution PDF version available also at http://www.mpifr.de/staff/jgroh/etacar.htm

    The Orientation of the Eta Carinae Binary System

    Full text link
    We examine a variety of observations that shed light on the orientation of the semi-major axis of the Eta Carinae massive binary system. Under several assumptions we study the following observations: The Doppler shifts of some He I P-Cygni lines that is attributed to the secondary's wind, of one Fe II line that is attributed to the primary's wind, and of the Paschen emission lines which are attributed to the shocked primary's wind, are computed in our model and compared with observations. We compute the hydrogen column density toward the binary system in our model, and find a good agreement with that deduced from X-ray observations. We calculate the ionization of surrounding gas blobs by the radiation of the hotter secondary star, and compare with observations of a highly excited [Ar III] narrow line. We find that all of these support an orientation where for most of the time the secondary - the hotter less massive star - is behind the primary star. The secondary comes closer to the observer only for a short time near periastron passage, in its highly eccentric (e~0.9) orbit. Further supporting arguments are also listed, followed by discussion of some open and complicated issues.Comment: 12 pages, 9 figure

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    CP Violation in radiative Z Decays

    Get PDF
    We propose to test the CP symmetry in the reactions Z -> mu+ mu- gamma and Z -> tau+ tau- gamma. The experimental analysis of angular correlations allows to determine a set of effective couplings: the electric and weak dipole moments of the muon and the tau lepton, and in particular chirality conserving 4-particle couplings, all of which can be induced by CP--violation in renormalizable theories of electroweak interactions beyond the Standard Model. We update an indirect bound on the weak dipole moment of the muon.Comment: 19 pages, Latex, 4 Figures in PostScript forma

    Possible Implications of Mass Accretion in Eta Carinae

    Full text link
    We apply the previously suggested accretion model for the behavior of the super-massive binary system Eta Carinae close to periastron passages. In that model it is assumed that for ~10 weeks near periastron passages one star is accreting mass from the slow dense wind blown by the other star. We find that the secondary, the less massive star, accretes ~2x10^{-6}Mo. This mass possesses enough angular momentum to form a disk, or a belt, around the secondary. The viscous time is too long for the establishment of equilibrium, and the belt must be dissipated as its mass is being blown in the reestablished secondary wind. This processes requires about half a year, which we identify with the recovery phase of Eta Carinae. We show that radiation pressure, termed radiative braking, cannot prevent accretion. In addition to using the commonly assumed binary model for Eta Carinae, we also examine alternative models where the stellar masses are larger, and/or the less massive secondary blows the slow dense wind, while the primary blows the tenuous fast wind and accretes mass for ~10 weeks near periastron passages. We end by some predictions for the next event (January-March 2009).Comment: New Astronomy, in pres

    Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction

    Get PDF
    Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.Peer reviewe
    corecore