1,734 research outputs found

    Stratospheric ozone changes under solar geoengineering: Implications for UV exposure and air quality

    Get PDF
    Abstract. Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality. We thank the European Research Council for funding through the ACCI project, project number 267760. In particular, we thank Jonathan M. Gregory (UK Met Office, University of Reading), Manoj M. Joshi (University of East Anglia) and Annette Osprey (University of Reading) for model development as part of the QUEST-ESM project supported by the UK Natural Environment Research Council (NERC) under contract numbers RH/H10/19 and R8/H12/124. We acknowledge use of the MONSooN system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, which is a strategic partnership between the UK Met Office and NERC. For plotting, we used Matplotlib, a 2-D graphics environment for the Python programming language developed by Hunter (2007). We are grateful for advice of P. Telford during the model development stage of this project and thank the UKCA team at the UK Met Office for help and support.This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-16-4191-2016

    Future Arctic ozone recovery: the importance of chemistry and dynamics

    Get PDF
    Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960–2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of  ∼  11.5 DU decade⁻¹, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by  ∼  50–100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Clᵧ) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001–2020 and 2061–2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100–50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades to come.We thank NCAS Computational Model Support for help with setting up and porting the model. We acknowledge the ARCHER UK National Supercomputing Service. We acknowledge use of the MONSooN system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, which is a strategic partnership between the UK Met Office and the NERC. Amanda C. Maycock, John A. Pyle and N. Luke Abraham were supported by the National Centre for Atmospheric Science, a NERC-funded research centre. We acknowledge funding from the ERC for the ACCI project (grant number 267760), including a PhD studentship for Ewa M. Bednarz. Amanda C. Maycock acknowledges support from an AXA postdoctoral fellowship and NERC grant NE/M018199/1

    Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the amplitude of the 11-year solar cycle forcing

    Get PDF
    The atmospheric response to the 11-year solar cycle is separated into the contributions from changes in direct radiative heating and photolysis rates using specially designed sensitivity simulations with the UM-UKCA (Unified Model coupled to the United Kingdom Chemistry and Aerosol model) chemistry–climate model. We perform a number of idealised time-slice experiments under perpetual solar maximum (SMAX) and minimum conditions (SMIN), and we find that contributions from changes in direct heating and photolysis rates are both important for determining the stratospheric shortwave heating, temperature and ozone responses to the amplitude of the 11-year solar cycle. The combined effects of the processes are found to be largely additive in the tropics but nonadditive in the Southern Hemisphere (SH) high latitudes during the dynamically active season. Our results indicate that, in contrast to the original mechanism proposed in the literature, the solar-induced changes in the horizontal shortwave heating rate gradients not only in autumn/early winter but throughout the dynamically active season are important for modulating the dynamical response to changes in solar forcing. In spring, these gradients are strongly influenced by the shortwave heating anomalies at higher southern latitudes, which are closely linked to the concurrent changes in ozone. In addition, our simulations indicate differences in the winter SH dynamical responses between the experiments. We suggest a couple of potential drivers of the simulated differences, i.e. the role of enhanced zonally asymmetric ozone heating brought about by the increased solar-induced ozone levels under SMAX and/or sensitivity of the polar dynamical response to the altitude of the anomalous radiative tendencies. All in all, our results suggest that solar-induced changes in ozone, both in the tropics/mid-latitudes and the polar regions, are important for modulating the SH dynamical response to the 11-year solar cycle. In addition, the markedly nonadditive character of the SH polar vortex response simulated in austral spring highlights the need for consistent model implementation of the solar cycle forcing in both the radiative heating and photolysis schemes

    Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints

    Get PDF
    Major tropical volcanic eruptions have emitted large quantities of stratospheric sulphate and are potential sources of stratospheric chlorine although this is less well constrained by observations. This study combines model and ice core analysis to investigate past changes in total column ozone. Historic eruptions are good analogues for future eruptions as stratospheric chlorine levels have been decreasing since the year 2000. We perturb the pre-industrial atmosphere of a chemistry-climate model with high and low emissions of sulphate and chlorine. The sign of the resulting Antarctic ozone change is highly sensitive to the background stratospheric chlorine loading. In the first year, the response is dynamical, with ozone increases over Antarctica. In the high HCl (2 Tg emission) experiment, the injected chlorine is slowly transported to the polar regions with subsequent chemical ozone depletion. These model results are then compared to measurements of the stable nitrogen isotopic ratio, δ15N(NO−3), from a low snow accumulation Antarctic ice core from Dronning Maud Land (recovered in 2016-17). We expect ozone depletion to lead to increased surface ultraviolet (UV) radiation, enhanced air-snow nitrate photo-chemistry and enrichment in δ15N(NO−3) in the ice core. We focus on the possible ozone depletion event that followed the largest volcanic eruption in the past 1000 years, Samalas in 1257. The characteristic sulphate signal from this volcano is present in the ice-core but the variability in δ15N(NO−3) dominates any signal arising from changes in UV from ozone depletion. Prolonged complete ozone removal following this eruption is unlikely to have occurred over Antarctica.National Environment Research Council (NERC) Standard Grant (NE/N011813/1

    Changes in JC virus-specific T cell responses during natalizumab treatment and in natalizumab-associated progressive multifocal leukoencephalopathy

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) induced by JC virus (JCV) is a risk for natalizumab-treated multiple sclerosis (MS) patients. Here we characterize the JCV-specific T cell responses in healthy donors and natalizumab-treated MS patients to reveal functional differences that may account for the development of natalizumab-associated PML. CD4 and CD8 T cell responses specific for all JCV proteins were readily identified in MS patients and healthy volunteers. The magnitude and quality of responses to JCV and cytomegalovirus (CMV) did not change from baseline through several months of natalizumab therapy. However, the frequency of T cells producing IL-10 upon mitogenic stimulation transiently increased after the first dose. In addition, MS patients with natalizumab-associated PML were distinguished from all other subjects in that they either had no detectable JCV-specific T cell response or had JCV-specific CD4 T cell responses uniquely dominated by IL-10 production. Additionally, IL-10 levels were higher in the CSF of individuals with recently diagnosed PML. Thus, natalizumab-treated MS patients with PML have absent or aberrant JCV-specific T cell responses compared with non-PML patients, and changes in T cell-mediated control of JCV replication may be a risk factor for developing PML. Our data suggest further approaches to improved monitoring, treatment and prevention of PML in natalizumab-treated patients

    Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative

    Get PDF
    We provide an overview of the REF-C1SD specified-dynamics experiment that was conducted as part of phase 1 of the Chemistry-Climate Model Initiative (CCMI). The REF-C1SD experiment, which consisted of mainly nudged general circulation models (GCMs) constrained with (re)analysis fields, was designed to examine the influence of the large-scale circulation on past trends in atmospheric composition. The REF-C1SD simulations were produced across various model frameworks and are evaluated in terms of how well they represent different measures of the dynamical and transport circulations. In the troposphere there are large (∼40 %) differences in the climatological mean distributions, seasonal cycle amplitude, and trends of the meridional and vertical winds. In the stratosphere there are similarly large (∼50 %) differences in the magnitude, trends and seasonal cycle amplitude of the transformed Eulerian mean circulation and among various chemical and idealized tracers. At the same time, interannual variations in nearly all quantities are very well represented, compared to the underlying reanalyses. We show that the differences in magnitude, trends and seasonal cycle are not related to the use of different reanalysis products; rather, we show they are associated with how the simulations were implemented, by which we refer both to how the large-scale flow was prescribed and to biases in the underlying free-running models. In most cases these differences are shown to be as large or even larger than the differences exhibited by free-running simulations produced using the exact same models, which are also shown to be more dynamically consistent. Overall, our results suggest that care must be taken when using specified-dynamics simulations to examine the influence of large-scale dynamics on composition

    Lightning NOx, a key chemistry-climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity

    Get PDF
    Lightning is one of the major natural sources of NOx in the atmosphere. A suite of time slice experiments using a stratosphere-resolving configuration of the Unified Model (UM), containing the United Kingdom Chemistry and Aerosols sub-model (UKCA), has been performed to investigate the impact of climate change on emissions of NOx from lightning (LNOx) and to highlight its critical impacts on photochemical ozone production and the oxidising capacity of the troposphere. Two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5) are explored. LNOx is simulated to increase in a year-2100 climate by 33% (RCP4.5) and 78% (RCP8.5), primarily as a result of increases in the depth of convection. The total tropospheric chemical odd oxygen production (P(Ox)) increases linearly with increases in total LNOx and consequently, tropospheric ozone burdens of 29 ± 4 Tg(O3) (RCP4.5) and 46 ± 4 Tg(O3) (RCP8.5) are calculated here. By prescribing a uniform surface boundary concentration for methane in these simulations, methane-driven feedbacks are essentially neglected. A simple estimate of the contribution of the feedback reduces the increase in ozone burden to 24 and 33 Tg(O3), respectively. We thus show that, through changes in LNOx, the effects of climate change counteract the simulated mitigation of the ozone burden, which results from reductions in ozone precursor emissions as part of air quality controls projected in the RCP scenarios. Without the driver of increased LNOx, our simulations suggest that the net effect of climate change would be to lower free tropospheric ozone. In addition, we identify large climate-change-induced enhancements in the concentration of the hydroxyl radical (OH) in the tropical upper troposphere (UT), particularly over the Maritime Continent, primarily as a consequence of greater LNOx. The OH enhancement in the tropics increases oxidation of both methane (with feedbacks onto chemistry and climate) and very short-lived substances (VSLS) (with implications for stratospheric ozone depletion). We emphasise that it is important to improve our understanding of LNOx in order to gain confidence in model projections of composition change under future climate

    Chemistry-driven changes strongly influence climate forcing from vegetation emissions

    Get PDF
    Biogenic volatile organic compounds (BVOCs) affect climate via changes to aerosols, aerosol-cloud interactions (ACI), ozone and methane. BVOCs exhibit dependence on climate (causing a feedback) and land use but there remains uncertainty in their net climatic impact. One factor is the description of BVOC chemistry. Here, using the earth-system model UKESM1, we quantify chemistry’s influence by comparing the response to doubling BVOC emissions in the pre-industrial with standard and state-of-science chemistry. The net forcing (feedback) is positive: ozone and methane increases and ACI changes outweigh enhanced aerosol scattering. Contrary to prior studies, the ACI response is driven by cloud droplet number concentration (CDNC) reductions from suppression of gas-phase SO2 oxidation. With state-of-science chemistry the feedback is 43% smaller as lower oxidant depletion yields smaller methane increases and CDNC decreases. This illustrates chemistry’s significant influence on BVOC’s climatic impact and the more complex pathways by which BVOCs influence climate than currently recognised
    corecore