68 research outputs found
Next-generation sequencing shows marked rearrangements of BK polyomavirus that favor but are not required for polyomavirus-associated nephropathy
Background BKPyV is associated with polyomavirus-associated nephropathy (PVAN), a major cause of graft rejection in kidney transplant recipients (KTRs). Mutations occur in the transcriptional control region (TCR) of BKPyV, but whether they are required for the development of PVAN is not completely understood. To this end, we characterized BKPyV TCRs from KTRs to assess whether TCR mutations are associated with PVAN. Study design We analyzed urine and plasma samples of fifteen KTRs with biopsy-confirmed PVAN, presumptive PVAN, or probable PVAN in order to explore the contents of the BKPyV virome. BKPyV TCRs were amplified and deep sequenced to characterize the viral strains. Alterations in block structures and transcription factor binding sites were investigated. Results The majority of sequences in both urine and plasma samples represented archetype BKPyV TCR. Minor populations harboring rearranged TCRs were detected in all patient groups. In one biopsy-confirmed PVAN patient rearranged TCRs predominated, and in another patient half of all reads represented rearranged sequences. Conclusions Although archetype BKPyV predominated in most patients, highest proportions and highest numbers of rearranged strains were detected in association with PVAN. TCR mutations seem not necessary for the development of PVAN, but immunosuppression may allow increased viral replication giving rise to TCR variants with enhanced replication efficiency.Peer reviewe
Multiplex analysis of Human Polyomavirus diversity in kidney transplant recipients with BK virus replication
Background: While the pathogenicity of the two initially identified Human Polyomaviruses (HPyVs), BK Virus (BKPyV) and JC Virus (JCPyV) has been intensely studied, there is only limited data, on whether the occurrence of the recently discovered HPyVs correlates with high level BKPyV replication and progression towards Polyomavirus associated nephropathy (PVAN). Methods: Therefore, we performed a comprehensive longitudinal genoprevalence analysis of 13 HPyVs using a novel multiplex assay including 400 serum and 388 urine samples obtained from 99 kidney transplant recipients (KTRs), grouped by quantitative BKPyV DNA loads and evidence of manifest BKPyV associated disease (histologically verified PVAN, high urinary decoy cell levels and concurrent decrease of renal function). Results: In total, 3 different non-BKPyV/JCPyV HPyVs, Human Polyomavirus 9, Merkel Cell Polyomavirus (MCPyV) and Trichodysplasia Spinulosa associated Polyomavirus were detected in 11 blood and 21 urine samples from 21 patients. Although DNAemia of these viruses occurred more frequently during high level BKPyV DNAemia and PVAN, the increase of the detection frequency due to progression of BKPyV replication did not reach statistical significance for blood samples. The positive detection rate of MCPyV in urine, however, was significantly higher during BKPyV DNAemia in 19 KTRs of our cohort who suffered from histologically verified PVAN (p=0.005). In one individual with PVAN, continuous long-term shedding of MCPyV in urine was observed. Conclusion: In our cohort the recently discovered HPyVs HPyV9, TSPyV and MCPyV emerged in blood from KTRs with variable kinetics, while detection of MCPyV DNAuria occurred more frequently during BKPyV DNAemia in patients with PVAN.Peer reviewe
Развитие нестандартных форм занятости
Представлена характеристика и обобщены признаки нестандартных форм занятости, разнообразие которых связано с развитием и повышением доступности технологий, дано определение виртуальной занятости. Подчеркивается, что распространение нестандартных форм занятости является ответом рынка труда на происходящие изменения в экономик
Specialist laboratory networks as preparedness and response tool - the Emerging Viral Diseases-Expert Laboratory Network and the Chikungunya outbreak, Thailand, 2019
We illustrate the potential for specialist laboratory networks to be used as preparedness and response tool through rapid collection and sharing of data. Here, the Emerging Viral Diseases-Expert Laboratory Network (EVD-LabNet) and a laboratory assessment of chikungunya virus (CHIKV) in returning European travellers related to an ongoing outbreak in Thailand was used for this purpose. EVD-LabNet rapidly collected data on laboratory requests, diagnosed CHIKV imported cases and sequences generated, and shared among its members and with the European Centre for Disease Prevention and Control. Data across the network showed an increase in CHIKV imported cases during 1 October 2018-30 April 2019 vs the same period in 2018 (172 vs 50), particularly an increase in cases known to be related to travel to Thailand (72 vs 1). Moreover, EVD-LabNet showed that strains were imported from Thailand that cluster with strains of the ECSA-IOL E1 A226 variant emerging in Pakistan in 2016 and involved in the 2017 outbreaks in Italy. CHIKV diagnostic requests increased by 23.6% between the two periods. The impact of using EVD-LabNet or similar networks as preparedness and response tool could be improved by standardisation of the collection, quality and mining of data in routine laboratory management systems.Peer reviewe
Longitudinal assessment of the CXCL10 blood and urine concentration in kidney transplant recipients with BK polyomavirus replication—a retrospective study
In kidney transplant recipients (KTRs), BK polyomavirus (BKPyV) replication may progress to polyomavirus-associated nephropathy (PVAN). In this retrospective study, we assessed the chemokine CXCL10 in urine and blood samples consecutively acquired from 85 KTRs who displayed different stages of BKPyV replication and eventually developed PVAN. In parallel to progression toward PVAN, CXCL10 gradually increased in blood and urine, from baseline (prior to virus replication) to BKPyV DNAuria (median increase in blood: 42.15 pg/ml, P = 0.0156), from mere DNAuria to low- and high-level BKPyV DNAemia (median increase: 52.60 and 87.26 pg/ml, P = 0.0010 and P = 0.0002, respectively) and peaked with histologically confirmed PVAN (median increase: 145.00 pg/ml, P <0.0001). CXCL10 blood and urine levels significantly differed among KTRs with respect to simultaneous presence of human cytomegalovirus (P <0.001) as well as in relation to the clinical severity of respective BKPyV DNAemia episodes (P = 0.0195). CXCL-10 concentrations were particularly lower in KTRs in whom BKPyV DNAemia remained without clinical evidence for PVAN, as compared to individuals who displayed high decoy cell levels, decreased renal function and/or biopsy-proven PVAN (median blood concentration: 266.97 vs. 426.42 pg/ml, P = 0.0282). In conclusion, in KTRs CXCL10 rises in parallel to BKPyV replication and correlates with the gradual development of PVAN.Peer reviewe
Corrigendum: Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection
Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.(VLID)470226
Tick-borne Encephalitis from Eating Goat Cheese in a Mountain Region of Austria
We report transmission of tick-borne encephalitis virus (TBEV) in July 2008 through nonpasteurized goat milk to 6 humans and 4 domestic pigs in an alpine pasture 1,500 m above sea level. This outbreak indicates the emergence of ticks and TBEV at increasing altitudes in central Europe and the efficiency of oral transmission of TBEV
Different Neutralization Profiles After Primary SARS-CoV-2 Omicron BA.1 and BA.2 Infections
Background and MethodsThe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls.ResultsPrimary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested.ConclusionsOur study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants
Specialist laboratory networks as preparedness and response tool - the Emerging Viral Diseases-Expert Laboratory Network and the Chikungunya outbreak, Thailand, 2019.
We illustrate the potential for specialist laboratory networks to be used as preparedness and response tool through rapid collection and sharing of data. Here, the Emerging Viral Diseases-Expert Laboratory Network (EVD-LabNet) and a laboratory assessment of chikungunya virus (CHIKV) in returning European travellers related to an ongoing outbreak in Thailand was used for this purpose. EVD-LabNet rapidly collected data on laboratory requests, diagnosed CHIKV imported cases and sequences generated, and shared among its members and with the European Centre for Disease Prevention and Control. Data across
the network showed an increase in CHIKV imported cases during 1 October 2018-30 April 2019 vs the same period in 2018 (172 vs
50), particularly an increase in cases known to be related to travel to Thailand (72 vs 1). Moreover, EVD-LabNet showed that strains were imported from Thailand that cluster with strains of the ECSA-IOL E1 A226 variant emerging in Pakistan in 2016 and involved in the 2017 outbreaks in Italy. CHIKV diagnostic requests increased by 23.6% between the two periods. The impact of using EVD-LabNet or similar networks as preparedness and response tool could be improved by standardisation of the collection, quality and mining of data in routine laboratory management systems
- …