1,111 research outputs found

    Development and operational experience of magnetic horn system for T2K experiment

    Get PDF
    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×10206.63\times10^{20} protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the ΜΌ→Μe\nu_{\mu}\rightarrow\nu_e oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and Methods in Physics Research,

    Fundamental properties of Tsallis relative entropy

    Get PDF
    Fundamental properties for the Tsallis relative entropy in both classical and quantum systems are studied. As one of our main results, we give the parametric extension of the trace inequality between the quantum relative entropy and the minus of the trace of the relative operator entropy given by Hiai and Petz. The monotonicity of the quantum Tsallis relative entropy for the trace preserving completely positive linear map is also shown without the assumption that the density operators are invertible. The generalized Tsallis relative entropy is defined and its subadditivity is shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov inequality is also proven

    Observation of the first gravitational microlensing event in a sparse stellar field : the Tago event

    Full text link
    We report the observation of the first gravitational microlensing event in a sparse stellar field, involving the brightest (V=11.4 mag) andclosest (~ 1 kpc) source star to date. This event was discovered by an amateurastronomer, A. Tago, on 2006 October 31 as a transient brightening, by ~4.5 mag during a ~15 day period, of a normal A-type star (GSC 3656-1328) in the Cassiopeia constellation. Analysis of both spectroscopic observations and the light curve indicates that this event was caused by gravitational microlensing rather than an intrinsically variable star. Discovery of this single event over a 30 year period is roughly consistent with the expected microlensing rate for the whole sky down to V = 12 mag stars. However, the probability for finding events with such a high magnification (~ 50) is much smaller, by a factor ~1/50, which implies that the true event rate may be higher than expected. This discovery indicates the potential of all sky variability surveys, employing frequent sampling by telescopes with small apertures and wide fields of view, for finding such rare transient events, and using the observations to explore galactic disk structure and search for exo-planets.Comment: 13 pages, 2 tables, 3 figures, accepted by Ap

    The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity

    Get PDF
    Podoplanin (PDPN/Aggrus/T1α) binds to C-type lectin-like receptor-2 (CLEC-2) and induces platelet aggregation. PDPN is associated with malignant progression, tumor metastasis, and poor prognosis in several types of cancer. Although many anti-human PDPN (hPDPN) monoclonal antibodies (mAbs), such as D2-40 and NZ-1, have been established, these epitopes are limited to the platelet aggregation-stimulating (PLAG) domain (amino acids 29-54) of hPDPN. Recently, we developed a novel mouse anti-hPDPN mAb, LpMab-7, which is more sensitive than D2-40 and NZ-1, using the Cancer-specific mAb (CasMab) method. The epitope of LpMab-7 was shown to be entirely different from that of NZ-1, a neutralizing mAb against the PLAG domain according to an inhibition assay and lectin microarray analysis. In the present study, we produced a mouse-human chimeric anti-hPDPN mAb, chLpMab-7. ChLpMab-7 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, chLpMab-7 inhibited the growth of hPDPN-expressing tumors in vivo. Although chLpMab-7 recognizes a non-PLAG domain of hPDPN, it suppressed the hematogenous metastasis of hPDPN-expressing tumors. These results indicated that chLpMab-7 suppressed tumor development and hematogenous metastasis in a neutralization-independent manner. In conclusion, hPDPN shows promise as a target in the development of a novel antibody-based therapy

    Measurement of the forward-backward asymmetries for charm- and bottom-quark pair productions at <s><\sqrt{s}>=58GeV with electron tagging

    Full text link
    We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at =58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb−1^{-1} taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are AFBc=−0.49±0.20(stat.)±0.08(sys.)A_{FB}^c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.) and AFBb=−0.64±0.35(stat.)±0.13(sys.)A_{FB}^b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.), which are consistent with the standard model predictions.Comment: 19 pages, Latex format (article), 5 figures included. to be published in Phys. Lett.

    Measurement of the cross-section and forward-backward charge asymmetry for the b and c-quark in e+e- annihilation with inclusive muons at sqrt(s) = 58 GeV

    Full text link
    We have studied inclusive muon events using all the data collected by the TOPAZ detector at sqrt(s)=58 GeV with an integrated luminosity of 273pb-1. From 1328 inclusive muon events, we measured the ratio R_qq of the cross section for qq-bar production to the total hadronic cross section and forward-backward asymmetry A^q_FB for b and c quarks. The obtained results are R_bb = 0.13+-0.02(stat)+-0.01(syst), R_cc = 0.36+-0.05(stat)+-0.05(syst), A^b_FB = -0.20+-0.16(stat)+-0.01(syst) and A^c_FB = -0.17+-0.14(stat)+-0.02(syst), in fair agreement with a prediction of the standard model.Comment: To be published in EPJ C. 24 pages, 12 figure

    Spectral Correlation in Incommensurate Multi-Walled Carbon Nanotubes

    Full text link
    We investigate the energy spectra of clean incommensurate double-walled carbon nanotubes, and find that the overall spectral properties are described by the so-called critical statistics of Anderson metal-insulator transition. In the energy spectra, there exist three different regimes characterized by Wigner-Dyson, Poisson, and semi-Poisson distributions. This feature implies that the electron transport in incommensurate multi-walled nanotubes can be either diffusive, ballistic, or intermediate between them, depending on the position of the Fermi energy.Comment: final version to appear in Phys. Rev. Let

    Chimeric Anti-PDPN Antibody ChLpMab-2

    Get PDF
    Human podoplanin (hPDPN ), a platelet aggregation‐inducing transmembrane glycoprotein, is expressed in different types of tumors, and it binds to C‐type lectin‐like receptor 2 (CLEC ‐2). The overexpression of hPDPN is involved in invasion and metastasis. Anti‐hPDPN monoclonal antibodies (mAbs) such as NZ ‐1 have shown antitumor and antimetastatic activities by binding to the platelet aggregation‐stimulating (PLAG ) domain of hPDPN . Recently, we developed a novel mouse anti‐hPDPN mAb, LpMab‐2, using the cancer‐specific mAb (CasMab) technology. In this study we developed chLpMab‐2, a human–mouse chimeric anti‐hPDPN antibody, derived from LpMab‐2. chLpMab‐2 was produced using fucosyltransferase 8‐knockout (KO ) Chinese hamster ovary (CHO )‐S cell lines. By flow cytometry, chLpMab‐2 reacted with hPDPN ‐expressing cancer cell lines including glioblastomas, mesotheliomas, and lung cancers. However, it showed low reaction with normal cell lines such as lymphatic endothelial and renal epithelial cells. Moreover, chLpMab‐2 exhibited high antibody‐dependent cellular cytotoxicity (ADCC ) against PDPN ‐expressing cells, despite its low complement‐dependent cytotoxicity. Furthermore, treatment with chLpMab‐2 abolished tumor growth in xenograft models of CHO /hPDPN , indicating that chLpMab‐2 suppressed tumor development via ADCC . In conclusion, chLpMab‐2 could be useful as a novel antibody‐based therapy against hPDPN ‐expressing tumors

    Measurement of inclusive electron cross section in γγ\gamma \gamma collisions at TRISTAN

    Full text link
    We have studied open charm production in γγ\gamma \gamma collisions with the TOPAZ detector at the TRISTAN e+e−e^{+}e^{-} collider. In this study, charm quarks were identified by electrons (and positrons) from semi-leptonic decays of charmed hadrons. The data corresponded to an integrated luminosity of 95.3 pb−1^{-1} at a center-of-mass energy of 58 GeV. The results are presented as the cross sections of inclusive electron production in γγ\gamma \gamma collisions with an anti-tag condition, as well as the subprocess cross sections, which correspond to resolved-photon processes. The latter were measured by using a sub-sample with remnant jets. A comparison with various theoretical predictions based on direct and resolved-photon processes showed that our data prefer that with relatively large gluon contents in a photon at small x(x≀0.1)x (x \le 0.1), with the next-to-leading order correction, and with a charm-quark mass of 1.3 GeV.Comment: 26 pages, Latex format (article), 5 figures included, to be published in Phys. Lett.
    • 

    corecore