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Fundamental propenies for the Tsallis relative entropy in both classical and quan-

tum systems are studied. As one of our main results, we give the parametric exten-

sion of the trace inequality between the quantum relative entropy and the minus of

the trace of the relative operator entropy given by Hiai and Petz. The monotonicity

of the quantum Tsallis relative entropy for the trace preserving completely positive

linear map is also shown without the assumption that the density operators are
invertible. The generalized Tsallis relative entropy is defined and its subadditivity is

shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov in-
equality is also proven. @ 2004 American Institute ofPhysics.
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1. INTRODUCTION

   In the field of the statistical physics, Tsallis entropy was defined in Ref. 28 by Sq(X)=

- 2m(x)q lnqp(x) with one parameter q as an extension of Shannon entropy, where q-logarithm is
defined by lnq(x) EE (xi-g-1)1(1-q) for any non-negative real number g and x, and p(x)!iip(X

=x) is the probability distribution of the given random variable X. We easily find that the Tsallis

entropy Sg(X) converges to the Shannon entropy -2.p(x)logp(x) as g-1, since q-logarithm
uniformly converges to natural logarithm as q-1. Tsallis entropy plays an essential role in
nonextensive statistics, which is often called Tsallis statistics, so that many important results have
been published from the various points of view.29 As a matter of course, the Tsallis entropy and its

related topics are mainly studied in the field of statisitical physics. However the concept of entropy

is important not only in thermodynamical physics and statistical physics but also in information

theory and analytical mathematics such as operator theory and probability theory. Recently, infor-
mation theory has been in progress as quantum information theoryi9 with the help of the operator

theory5'i2 and the quantum entropy theory.20 To study a certain entropic quantity is important for

the development of information theory and the mathematical interest itself. In particular, the

relative entropy is fundamental in the sense that it produces the entropy and the mutual informa-

tion as special cases. Therefore in the present paper, we study properties of the Tsallis relative

entropy in both the classical and quantum systems.
   In the rest of this section, vve will review several fundamental properties of the Tsallis relative

entropy, as giving short proofs for the convenience of the readers. See Refs. 7, 27, and 26, for the

pioneering works of the Tsallis relative entropy and their applications in the classical system.

   Definition 1.1: We suppose ai and bj are probability disuibutions satisfying aJ• -År O, bj ;År. O, and
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2J"•.iai=2Jn•.ibJ•= 1. Then we define the Tsallis relative entropy between A={aj} and B={bj}, for any

qÅrxOas

                            D,(AIB) =' - ]Åí aj ln, tb:i, (1)

                                      j---1 aj
where q-logarithm function is defined by lnq(x) i= (xi-9- 1)1(1 -q) for non-negative real number x

and g, and we make a convention O lnq oo =- O.
   Note that limq-i Dg(A1B)=Di(AlB) iii! 2J•.iaj log(ajlbi), which is known as relative entropy

(which is often called Kullback-Leibler information, divergence or cross entropy). For the Tsallis

relative entropy, the following proposition is known.

   Proposition 1.2:

(1) (Non-negativity) D, (A I B) -' O.

(2) (Symmetry)Dq(aaf1),•••,aoT(n)Ib7r(1),•••,bafn))=Dq(al,•••,anlbl,•••,bn)•

(3) (Possibility of extention) Dq(ai,...,a.,Olbi,•••,bn,O)=Dq(ai,•••,an1bi,•••,bn)•
(4)    (Pseudoadditivity)

     Dq(A(') Å~ A(2)IB(') Å~ B(2)) = Dq(A(i)IB(i)) + Dq(A(2)IB(2)) + (g ' 1)Dq(A(i)IB('))Dq(A(2)IB(2)),

    where

                      A(') Å~ A(2) ={a,(•')a,(•2)la,(•') E A(i),a52) E A(2)},

                      B(i) Å~ B(2) . {bS.i)b5.2)lb5.i) . B(i),bS.2) . B(2)}.

(5)  !J{Obi//.,l}C(?.n.VletrY, ).gOfiaOveN`XN" 1, anY g'-O and the probability distributions A(i)={a5.i)}, B(i)

        Dg()tA(') + (1 - X)A(2)IXB(i) + (1 - X)B(2)) -`-. XDq(A(')IB(i)) + (1 - X)Dq(A(2)IB(2)) •

(6) (Strong additivity)

               Dq(ai, ••• ,ai-i,aii,ai2,ai+i, •••,a.lbi, ••• ,bi-i,bii,bi2,bi+i, ••• ,b.)

                 =Dq(ai, ,anlbi, ,b.)+bl-qa9Dq(!ii'ii,!li'i!2 e'i,:i'ii2),

    where ai=aii+ai2, bi--bii+bi2•

   Proof (1) follows from the convexity of the function -lnq(x):

                   D,(AIB)=-te.,a,in,ib:,-År-in,(te.,aJlbl,)=O

io2g)-gunmd (i.3n)eqVaeliEiY7ial' (4) fOllOWS bY the direct calculation• (5) follows from the generalized

for non-negative numbers
-ÅrO to prove (6) as

l.lii at inq(II') N` (ll.lli a,

ai,Bi

)in,
SB
iii

2  ai
i=1

(2)

(i=1,2,...,n) and any q-ÅrO. We define the function Lq for g
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Lq(x,y) =- -x lng y

x

and

aii ai(1 - s), bi,=bi(1-t),

ai2 = ais, bi, = bit.

Then we have

            Lq(XIX2,YIY2) = X2Lq(Xl,Yl) +XILg(X2,Y2) + (9 - 1)Lq(Xl,Yl)Lq(X2,Y2) ,

which implies the claim with easy calculations.
   Remark 1.3: 1. (1) of Proposition 1.2 implies

Se(A) -`. Inq n,

since we have

                          D,(Al U) = - nq-'(S,(A) - ln, n) ,

for any q År- O and two probability distributions A={aJ•} and U={"j}, where uj= 1ln, (VJ'),

Tsallis entropy is represented by

where the

2. (4) of Proposition

                  n
         s,(A) i! -2 a9• ln, aj•

                 j-..1

1.2 is reduced to the pseudoadditivity for the Tsallis entropy:

               Se(A(') Å~ A(2)) " Sq(A(i)) + Sq(A(2)) + (1 - q)Sg(A('))Sg(A(2))•

   3. (5) of Proposition 1.2 recover the concavity for the Tsallis entropy, by setting

=
{1,O,...,O}, B(2)={1,O,...,O}.

   4. (6) of Proposition 1.2 is reduced to the strong additivity for the Tsallis entropy:

(3)

B(1)

      Sq(ai, ••• ,ai-i,aii,ai2,ai+i, ••• ,an) = Sq(ai, ••• ,at-i,at,at+i, ... ,a.) +a9Sq(fli'ii ,!li'i2).

   We finally show the monotonicity for the Tsallis relative entropy. To this end, we introduce
some notations. We consider the transition probability matrix VV: v4-B, which can be identified

to the matrix having the conditional probability VVji as elements, where v4 and B are alphabet sets
(finite sets) and 2JM•.i17Vji=1 for all i=1, ... ,n. By A={aSi")} and B={bSi")}, two distinct probability

g9ztr,g'lll"ti&"s,l:21th,z,i:3,2t.e.ystegl,",,ar,,e.f2?i.2t,s,g•[ps".:,hs,..?,io,ba.bAe'ild2i,tr,?!"stLefa11p.,stle.,,oltl,y,l

=2:.ibSi")VVji, in temis of VV={Wji} (i=1,...,n;J'=1,...,m). 'Ihen we have the following.

   Proposition 1.4: In the above notation, for any qÅr-O, we have

                          Dq(WAlVVIB) N` Dq(AlB)•

Proof Applying the generalized log-sum inequality Eq. (2), we have
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Dg(vvA1 vvB) = - J2M.i aiO"t) lnq 2tl:llll;:ill = - J2M.i A.i aSM) VVJt lnq 2I., bSin) vvj,

21., aSin) wj,
sÅq

-

 ,2M.i A., aSi")wJt inq 2tilll[lllliisi,llvVvV,, = - A., aS'") inq 2illi = Dq(AIB)

                                                                             -
   We note that the above proposition is a special case of the monotonicity off divergence9 for

the convex function f. Closing the introduction, we should also note here that the Tsallis entropy

can be derived by a simple transformation from Renyi entropy which was used before the Tsallis
one in the mathematical literature. See ReÅí 4 on the details of Renyi entropy, in particular see pp.

184-191 of Ref. 4 for the relation to the stmctural a-entropyi4 [or called the entropy of type iB

(Ref. 10)], which is one of the nonextensive entropies including the Tsallis entropy.

11. QUANTUM TSALLIS RELATIVE ENTROPY AND ITS PROPERTIES

In Refs. 1 and 2, the quantum Tsallis relative entropy was defined by

Dq(pla) i!
1 - Tt[pqoi-q]

1-q
(4)

for two density operators p and a and O -Åq. q Åq 1, as one parameter extension of the definition of the

quantum relative entropy by umegaki30

U(pla) =' Tr[p(log p- log a)]. (5)

See Chap. ll written by Rajagopal in Ref. 29, for the quantum version of Tsallis entropies and their

applications.

   For the quantum Tsallis relative entropy De(pl a) and the quantum relative entropy U(pl a),

the following relations are known.
   Proposition 2.I tRuskaiLStillinger24 (see also Ref 2I)J: For the strictly positive operators

with a unit trace p and a, we have

(1) Dq(p1 a) -Åq. U(pl u) "N D2-q(pI a) for O ÅqN gÅq 1.

(2) D2-q(p 1 a) -`-. U(pl a) NÅq Dq(pl a) for 1 Åqq -Åq-. 2.

   Note that both sides in both inequalities converge to U(pla) as q-1. We must extend this
definition of the Tsallis relative entropy Eq. (4) for ONÅqqxÅq2 and impose the invertibility on the

density operators ofD2-q(p1a) for OxÅqqÅq1 and of Dq(p1a) for 1Åqq-Åqs2.

   Proof Since we have for any xÅrO and tÅrO,

1-x-t xt-1
   Åq--ilogxxÅq ,

the following inequalities hold for any a,b,tÅrO:

a(1 - a-tbt ) -Åqs alog S NÅq a( atb-t - 1

t t

)•
(6)

Let p=2iXiPi and a=2jibtjej be the spectral decompositions. Since 2iPi=2Rj=I, then we have
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  Tr[ Pi"`at-t ' P - p(log p- log a)] = E, )J Tr[p,( Pi'tat-' - P - p(log p - log o')] eJ]

                               = ll, )J Tr[Pt(IX;"i[L7' - IX, - X, iog X, + N, iog itLJ)eJ]

                               = ;.l,j (IXI"ia7• ` - IXi - Ni log Xi + Xi log itLj)Tr[Piej] År- O.

The last inequality in the above is due to the inequality of the right-hand side of Eq. (6). Thus vve

have

                        Tr[p(log p - log a)] -Åq. ITr[pi'ta-t- p] .

                                            t

The left-hand side inequality is proven by a simi1ar way. Thus setting 1-q=t(ÅrO) in the above,

we have (1) in Proposition 2.1. Also we have (2) in Proposition 2.1, by setting q-1=t(ÅrO). 1

   We next consider another relation on the quantum Tsallis relative entropy. In ReÅí 11, the
relative operator entropy was defined by

                           S(pla) - pl/2 log(p-1/2ap-1/2)pl/2,

for two strictly positive operators p and a. If p and a are comnutative, then we have U(pl a)
=-Tr[S(p1 a)]. For this relative operator entropy and the quantum relative entropy U(pl a), Hiai

and Petz proved the following relation:

                               U(pla) -Åq•-TrfS(pla)], (7)
in Ref. 15 (see also Ref. 16).
   In our previous papers,32 we introduced the Tsallis relative operator entropy Tg(pla) as a

parametric extension of the relative operator entropy S(pl a) such as

                                  pl/2(p-II2ap-112)1-qplt2-p
                         T,(pl(T) ii 1-q '

for O -Åq. gÅq 1 and strictly positive operators p and a, in the sense that

                                lim T,(plo)=S(pla). (8)
                                q-1

Actually we should note that there is a slight difference between the two parameters q in the
present paper and x in the previous paper,32 which is an extension of Ref. 13. If p and a are

commutative, then we have Dq(p1 a)=-Tr[Tq(pl a)]. Also we now have that

                                lm D,(pl a)=U(pl a). (9)
                                q-1

These relations, Eq. (7), Eq. (8), and Eq. (9) naturally lead us to show the following theorem as a

parameuic extension of Eq. (7).

    Theorem 2.2: For O-Åq.qÅq 1 and any snictly positive operators with unit trace p and a, we

have

                              D,(pla) -Åq-Tr[T,(pla)]. (10)
    Proof' We denote the a-power mean #. by A#,,B =-Ai/2(A-ii2BA-i/2)aAit2. From Theorem 3.4

of Ref. 16, we have
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for any cv E [O,1].

             Tr[eA#.eB] Åqx Tr[e(1-a)A+ctB]

Setting A=log p and B=log (r, we have

                            Tr[Pti .o'] ÅqN Tr[elog pi-a+log (rcr] .

Since the Golden-Thompson inequality Tr[eA'B] Åqx Tr[eAeB] holds

and B, we have
for any Hemitian operators A

Tr[elog pl-a+log air] ÅqN Tr[elog pl-"elog crCY] . Tr[pl-ao.cr] .

Therefore

                         Tr[pl/2(p-1/2up-1/2)apl/2] NÅq Tr[pl-aoa]

which implies the theorem by taking a=1-q. -
   corollary 2.3 (Hiai-petzi5'i6): For any suictly positive operators with unit trace p and u, we

have

                      Tr[p(logp-log u)] -Åq Tr[p log(pi/2a-'p'i2)]. (11)

   Proof It follows by taking the limit as q-1 in both sides of Eq. (10). -
   Thus the result proved by Hiai and Petz in Refs. 15 and 16 is recovered as a special case of

Theorem 2.2.
   For the quantum Tsallis relative entropy Dq(pl a), (i) pseudoadditivity and (li) non-negativity

are shown in Ref. 1, moreover (iii) joint convexity and (iv) monotonicity for projective mesure-

ments, are shown in Ref. 2 Here we show the unitary invariance of Da(pl a) and the monotonicity
of that for the trace-preserving completely positive linear map.

   Proposition 2.4: For OxÅq gÅq 1 and any density operators p and a, the quantum relative entropy
Dg(pl u) has the following properties.

(1) (Non-negativity)D,(pla):':-O.
(2) (Pseudoadditivity) D,(pi X p2 l ai X a2) =D,(pi I ai) +D,(p2 l a2) + (q- 1)Dq(pi l ffi )Dq(p2 l a2) •

    (Joint convexity) D,(2,•X,-p,• 1 2jXja,•) -`cL 2jNjD,(p,• 1 aj)•(3)

(4) The quantum Tsallis relative entropy is invariant under the unitary transformation U:

                              D,( UpU " l UaU * ) = D,(pl a) .

    Proof' Since it holds that f(q,x,y)ii (x-x9yi-q)/(1-q)-(x-y)tÅrO for x-ÅrO, yÅr-O, and O
-Åq-`gÅq 1, we have Dq(p1 a) '- Tr[p-a], which implies (1), since p and a are density operators. (See

Proposition 3.16 of Ref. 21 on the so-called Klein inequality)
    (2) follows by the direct calculation.

    (3) follows from the Lieb's theorem that for any operator Z and and OÅqNtÅq-i 1, the functional
f(A ,B) =- Tr[Z*A'ZBi-'] is joint concave with respect to two positive operators A and B.

    (4) is obvious by the use of Stone-Weierstrass approximation theorem. (It also can be shown

by the application of Theorem 2.5.) -
    (1) of the above proposition follows from the generalized Peierls-Bogoliubov inequality
which will be shown in the next section.

   In Ref. 22, the monotonicity for more generalized relative entropy was shown under the
assumption of the invertibility of the density operators. Here we show the monotonicity for the

quantum Tsallis relative entropy in the case of O ÅqN q Åq 1 without the assumption of the invenibility

of the density operators.

   Theorem 2.5: For any trace-preserving completely positive linear map O, any density opera-
tors p and a and OÅqxqÅq1, we have

D,(O(p)1Åë(u)) '`- D,(pla).
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   Proof' We prove this theorem in a simi1ar way as Ref. 18. To this end, we first prove the
monotonicity of De(pl a) for the partial trace TrB in the composite sysytem AB. Let pAB and oAB

be density operators in the composite system AB. From Refs. 20 and 31, there exists unitary
operators Uj and the probability pj such that

                        pA x Z] .2 pj(I x uj)p"B(I x uj) * ,

                            nj
where n and I present the dimension and identity operator of the system B, pA=TrB[pAB] and

oA=TrB[oAB]. By the help of the joint concavity and the unitary invariance of the Tsallis relative

entropy, we thus have

D,(p" x f o"QL
    n

)'`-• 2 pjD,((I X Uj)pAB(I Q Uj) * 1(I x Uj)o"B

   j

= 2 PjDq(pABI oAB) = D,(pABI o"B) .

  j

(IQ Uj) *)

Since

D,(pA X S
o"

 x :) = D,(d'1oA),

we thus have

                       D,(TrB(pAB)ITrB(o"B)) -Åq D,(pABIo"B). (12)
It is known25 (see also Refs. 8, 18, and 19) that every trace-preserving completely positive linear

map Åë has the following representation with some unitary operator UAB on the total system AB

and the projection (pure state) PB on the subsystem B,

Therefore we have the
Dg(p1o) again,

       O(pA) = Tr, UAB(p" x pB)uAB*.

following result, by the result of Eq. (12) and the unitary invariance of

    Dq(Åë(pA)IO(o")) s`• Dq( UAB(p" X PB) UAB"l UAB(oA X PB) U"B') = Dg(pA X PBIoA X PB)

which implies our claim, since Dg(pAxPBIuAQPB)=Dq(pAluA). -
   Seuing u=(1ln)I in Theorem 2.5, we have the following corollary.
   Corollary 2.6: For any trace-preserving completely positive linear unital map O, any density

operator p and O-ÅqsqÅq1, we have

                               Hq(O(P)) -' Hq(P) ,

where Hq(X)=(Tr[Xq]-1)/(1-q) represents the Tsallis entropy for density operator X, which is

often called the quantum Tsallis entropy.

   We note that Theorem 2.5 for the fixed ff, namely the monotonicity of the quanmm Tsallis
relative entropy in the case of O(u)=o', was proved in Ref. 3 to establish Clausius' inequality.
   Remark 2.7: It is knowni9 (see also Ref. 23) that there is an equivalent relation between the

monotonicity for the quantum relative entropy and the strong subadditivity for the quantum en-
tropy. However in our case, we have not yet found such a relation. Because the pseudoadditivity

of the q-logarithm function,

                       lnqxy=lnqx+lnqy+(1-q)lnqxlnqy,

disturbs us to derive the beautifu1 relation such as
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                 De(P(X,Y) IP(X)Pfy)) = Sg(P(X)) + Sq(p(y)) - Sq(p (x,y))

for the Tsallis relative entropy Dq(p(x,y) lp(x)p(ly)), the Tsallis entropy Sq(p(x)), Sq(p(y)), and the

Tsallis joint entropy Sg(p(x,y)), even if our stage is in the classical system.

111. GENERALIZED TSALLIS RELATIVE ENTROPY

   For any two positive operators A, B and any real number q G [O, 1), we can define the gener-
alized Tsallis relative entropy.

   Definition 3.I:

                                    Tr[A] - Tr[AqBi-q]
                          D,(AllB)= 1'q '

   To avoid the confusions of readers, we use the different symbol Dg(•li •)
Tsallis relative entropy.

   Since Lieb's concavity theorem is available for any positive operators A
ized Tsallis relative entropy has a joint convexity,

for the generalized

and B, the general-

                       Dq(:i XiAj 2, XjB) Åqx])XjDq(AjllBj), (13)

for the positive number XJ- satisfying 2jXj= 1 and any positive operators AJ• and Bj. Then we have

the subadditivity of the generalized Tsallis relative entropy between Ai+A2 and Bi+B2.

   Theorem 3.2: For any positive operators Ai, A2, Bi, and B2, and ONÅqqÅq1, we have the
subadditivity

                    Dq(A i + A211Bi + B2) '`h' Dq(AillBi) + Dg(A211B2) '

   Proof' First we note that we have the following relation for any numbers

positive operators A and B,

           (14)

a and P, and two

D,(at411BB) = aD,(AllB) - a ln,
!CITr[AqBi-q].

a
(15)

Now from Eq. (13), we have

               Dq(XiXi + X2X211XiYi + X2Y2) '`" XiDg(XillYi) + X2Dq(X211 Y2)

for any positive operators Xi, X2, Yi, and Y2, and Ni, X2 (Xi+X2=1). Setting Ai=
=XiYi for i=1,2 in the above inequality, we have

XiXi and Bi

                Dq (Ai +A211Bi + B2) "x XiDq( 2i Bxi) + X2Dq( Åqi Bxi)

Thus we have our claim due to Eq. (15). -
   As a famous inequality in statistical physics, the peierls-Bogoliubov inequalityi7'6 is known.

Finally, we prove the generalized Peierls-Bogoliubov inequality for the generalized Tsallis relative

entropy in the following.

   Theorem 3.3: For any positive operators A and B, O:"ÅqqÅq 1,

D,(AllB) -År

Proof In general, we have the

Tr[A] - (Tr[A])q(Tr[B])'-q

following Hdld

             .1-q
er's inequality:
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                            ITr[XY]1 -Åq• Tr[Ixl']"s Tr[1ylt]iit,

for any bounded linear operators X and Y satisfying Tr[IXIS]Åqoo and

1ÅqsÅqoo and 1ÅqtÅqoo satisfying (1/s)+(1/t)=1. By setting X=AZ
=1/(1-q) in Eq. (16), we have

(16)

Tr[IYI']Åqoo and for any

 Y=Bi-q, and s=1/q, t

                           Tr[AqBi-q] -Åq. (Tr[A])g(Tr[B])i-q,

   Note that Theorem 3.3 can be considered a noncommutative version of Eq. (2). If A and B are
density operators, then the non-negativity of the quantum Tsallis relative entropy follows from

Theorem 3.3.

IV. CONCLUSION

   As we have seen, the monotonicity of the quantum Tsallis relative entropy for the trace-
preserving completely positive map was shown. Also the trace inequality between the Tsallis
quantum relative entropy and the Tsallis relative operator entropy was shown. It is remarkable that

our inequahty recovers the famous inequality shown by Mai-Petz as q- 1.
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