120 research outputs found

    Regulation of HuR by DNA Damage Response Kinases

    Get PDF
    As many DNA-damaging conditions repress transcription, posttranscriptional processes critically influence gene expression during the genotoxic stress response. The RNA-binding protein HuR robustly influences gene expression following DNA damage. HuR function is controlled in two principal ways: (1) by mobilizing HuR from the nucleus to the cytoplasm, where it modulates the stability and translation of target mRNAs and (2) by altering its association with target mRNAs. Here, we review evidence that two main effectors of ataxia-telangiectasia-mutated/ATM- and Rad3-related (ATM/ATR), the checkpoint kinases Chk1 and Chk2, jointly influence HuR function. Chk1 affects HuR localization by phosphorylating (hence inactivating) Cdk1, a kinase that phosphorylates HuR and thereby blocks HuR's cytoplasmic export. Chk2 modulates HuR binding to target mRNAs by phosphorylating HuR's RNA-recognition motifs (RRM1 and RRM2). We discuss how HuR phosphorylation by kinases including Chk1/Cdk1 and Chk2 impacts upon gene expression patterns, cell proliferation, and survival following genotoxic injury

    NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif

    Get PDF
    The RNA-binding protein nuclear factor 90 (NF90) has been implicated in the stabilization, transport and translational control of several target mRNAs. However, a systematic analysis of NF90 target mRNAs has not been performed. Here, we use ribonucleoprotein immunoprecipitation analysis to identify a large subset of NF90-associated mRNAs. Comparison of the 3ā€²-untranslated regions (UTRs) of these mRNAs led to the elucidation of a 25- to 30-nucleotide, RNA signature motif rich in adenines and uracils. Insertion of the AU-rich NF90 motif (ā€˜NF90mā€™) in the 3ā€²UTR of an EGFP heterologous reporter did not affect the steady-state level of the chimeric EGFP-NF90m mRNA or its cytosolic abundance. Instead, the translation of EGFP-NF90m mRNA was specifically repressed in an NF90-dependent manner, as determined by analysing nascent EGFP translation, the distribution of chimeric mRNAs on polysome gradients and the steady-state levels of expressed EGFP protein. The interaction of endogenous NF90 with target mRNAs was validated after testing both endogenous mRNAs and recombinant biotinylated transcripts containing NF90 motif hits. Further analysis showed that the stability of endogenous NF90 target mRNAs was not significantly influenced by NF90 abundance, while their translation increased when NF90 levels were reduced. In summary, we have identified an AU-rich RNA motif present in NF90 target mRNAs and have obtained evidence that NF90 represses the translation of this subset of mRNAs

    Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs

    Get PDF
    RNA-binding proteins (RBPs) regulate gene expression at many post-transcriptional levels, including mRNA stability and translation. The RBP nucleolin, with four RNA-recognition motifs, has been implicated in cell proliferation, carcinogenesis and viral infection. However, the subset of nucleolin target mRNAs and the influence of nucleolin on their expression had not been studied at a transcriptome-wide level. Here, we globally identified nucleolin target transcripts, many of which encoded cell growth- and cancer-related proteins, and used them to find a signature motif on nucleolin target mRNAs. Surprisingly, this motif was very rich in G residues and was not only found in the 3ā€²-untranslated region (UTR), but also in the coding region (CR) and 5ā€²-UTR. Nucleolin enhanced the translation of mRNAs bearing the G-rich motif, since silencing nucleolin did not change target mRNA stability, but decreased the size of polysomes forming on target transcripts and lowered the abundance of the encoded proteins. In summary, nucleolin binds G-rich sequences in the CR and UTRs of target mRNAs, many of which encode cancer proteins, and enhances their translation

    Regulation of HuR structure and function by dihydrotanshinone-I

    Get PDF
    The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3'UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity

    The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA

    Get PDF
    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3ā€²UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RTā€“qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns
    • ā€¦
    corecore