132 research outputs found
3α,7-dihydroxy-14(13â12)abeo-5ÎČ,12α(H),13ÎČ(H)-cholan-24-oic acids display neuroprotective properties in common forms of Parkinsonâs disease
Parkinsonâs Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinsonâs Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinsonâs Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinsonâs Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinsonâs Disease
Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimerâs pathophysiology and susceptibility
Background
Alzheimerâs disease is a neurodegenerative disorder in which extracellular deposition of ÎČ-amyloid (AÎČ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal AÎČ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal AĂ release at the synapse and hence play an early role in Alzheimerâs pathophysiology.
Results
Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all pâ<â0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal AÎČ exocytosis (pâ<â0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimerâs disease patients and 6,175 controls to determine their contribution to Alzheimerâs disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimerâs disease than those associated with lower VAMP1 transcript levels (pâ=â0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimerâs disease risk (ORâ=â0.88, pâ=â0.03). This polymorphism was associated with decreased VAMP1 transcript levels (pâ=â0.02) and was functionally active in a dual luciferase reporter gene assay (pâ<â0.01).
Conclusions
Genetically regulated VAMP1 expression in the brain may modify both Alzheimerâs disease risk and may contribute to Alzheimerâs pathophysiology
Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3
Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies
APOE Δ4 lowers age at onset and is a high risk factor for Alzheimer's disease; A case control study from central Norway
<p>Abstract</p> <p>Background</p> <p>The objective of this study was to analyze factors influencing the risk and timing of Alzheimer's disease (AD) in central Norway. The <it>APOE </it>Δ4 allele is the only consistently identified risk factor for late onset Alzheimer's disease (LOAD). We have described the allele frequencies of the apolipoprotein E gene (<it>APOE</it>) in a large population of patients with AD compared to the frequencies in a cognitively-normal control group, and estimated the effect of the <it>APOE </it>Δ4 allele on the risk and the age at onset of AD in this population.</p> <p>Methods</p> <p>376 patients diagnosed with AD and 561 cognitively-normal control individuals with no known first degree relatives with dementia were genotyped for the <it>APOE </it>alleles. Allele frequencies and genotypes in patients and control individuals were compared. Odds Ratio for developing AD in different genotypes was calculated.</p> <p>Results</p> <p>Odds Ratio (OR) for developing AD was significantly increased in carriers of the <it>APOE </it>Δ4 allele compared to individuals with the <it>APOE </it>Δ3/Δ3 genotype. Individuals carrying <it>APOE </it>Δ4/Δ4 had OR of 12.9 for developing AD, while carriers of <it>APOE </it>Δ2/Δ4 and <it>APOE </it>Δ3/Δ4 had OR of 3.2 and 4.2 respectively. The effect of the <it>APOE </it>Δ4 allele was weaker with increasing age. Carrying the <it>APOE </it>Δ2 allele showed no significant protective effect against AD and did not influence age at onset of the disease. Onset in LOAD patients was significantly reduced in a dose dependent manner from 78.4 years in patients without the <it>APOE </it>Δ4 allele, to 75.3 in carriers of one <it>APOE </it>Δ4 allele and 72.9 in carriers of two <it>APOE </it>Δ4 alleles. Age at onset in early onset AD (EOAD) was not influenced by <it>APOE </it>Δ4 alleles.</p> <p>Conclusion</p> <p><it>APOE </it>Δ4 is a very strong risk factor for AD in the population of central Norway, and lowers age at onset of LOAD significantly.</p
Genome-wide association and Meta-analysis of age at onset in Parkinson Disease
Background and Objectives Considerable heterogeneity exists in the literature concerning genetic determinants of the age at onset (AAO) of Parkinson disease (PD), which could be attributed to a lack of well-powered replication cohorts. The previous largest genome-wide association studies (GWAS) identified SNCA and TMEM175 loci on chromosome (Chr) 4 with a significant influence on the AAO of PD; these have not been independently replicated. This study aims to conduct a meta-analysis of GWAS of PD AAO and validate previously observed findings in worldwide populations.
Methods A meta-analysis was performed on PD AAO GWAS of 30 populations of predominantly European ancestry from the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease (COURAGE-PD) Consortium. This was followed by combining our study with the largest publicly available European ancestry dataset compiled by the International Parkinson Disease Genomics Consortium (IPDGC).
Results The COURAGE-PD Consortium included a cohort of 8,535 patients with PD (91.9%: Europeans and 9.1%: East Asians). The average AAO in the COURAGE-PD dataset was 58.9 years (SD = 11.6), with an underrepresentation of females (40.2%). The heritability estimate for AAO in COURAGE-PD was 0.083 (SE = 0.057). None of the loci reached genome-wide significance (p < 5 Ă 10â8). Nevertheless, the COURAGE-PD dataset confirmed the role of the previously published TMEM175 variant as a genetic determinant of the AAO of PD with Bonferroni-corrected nominal levels of significance (p < 0.025): (rs34311866: ÎČ(SE)COURAGE = 0.477(0.203), pCOURAGE = 0.0185). The subsequent meta-analysis of COURAGE-PD and IPDGC datasets (Ntotal = 25,950) led to the identification of 2 genome-wide significant association signals on Chr 4, including the previously reported SNCA locus (rs983361: ÎČ(SE)COURAGE+IPDGC = 0.720(0.122), pCOURAGE+IPDGC = 3.13 Ă 10â9) and a novel BST1 locus (rs4698412: ÎČ(SE)COURAGE+IPDGC = â0.526(0.096), pCOURAGE+IPDGC = 4.41 Ă 10â8).
Discussion Our study further refines the genetic architecture of Chr 4 underlying the AAO of the PD phenotype through the identification of BST1 as a novel AAO PD locus. These findings open a new direction for the development of treatments to delay the onset of PD
Large-scale assessment of polyglutamine repeat expansions in Parkinson disease
Objectives: We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). Methods: We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. Results: We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. Conclusions: Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD
Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson\u27s disease study
\ua9 The Author(s) 2024. Estimates of the spectrum and frequency of pathogenic variants in Parkinsonâs disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinsonâs disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (âŒ0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO †50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO †50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9
7 10â34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1
7 10â35). Female patients were 22% more likely to have a positive PDGT (P = 3
7 10â4), and for individuals with FH+ this likelihood was 55% higher (P = 1
7 10â14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that âŒ15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD
Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort
© 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited.
Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD.
Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed.
Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published.
Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Michael J. Fox Foundation for Parkinson's Research. Grant Number: ID 15015.02. NIHR Cambridge Biomedical Research Centre. Grant Number: BRC-1215-20014info:eu-repo/semantics/publishedVersio
- âŠ