20 research outputs found

    Cross section normalization in proton-proton collisions at s\sqrt{s} = 2.76 TeV and 7 TeV, with ALICE at LHC

    Full text link
    Measurements of the cross sections of the reference processes seen by the ALICE trigger system were obtained based on beam properties measured from van der Meer scans. The measurements are essential for absolute cross section determinations of physics processes. The paper focuses on instrumental and technical aspects of detectors and accelerators, including a description of the extraction of beam properties from the van der Meer scan. As a result, cross sections of reference processes seen by the ALICE trigger system are given for proton-proton collisions at two energies; s\sqrt{s}=2.76 TeV and 7 TeV, together with systematic uncertainties originating from beam intensity measurements and other detector effects. Consistency checks were performed by comparing to data from other experiments in LHC.Comment: Quark Matter 2011 Conference Proceedings, 4 pages, 2 figure

    Evolution of mechanism of parton energy loss with transverse momentum at RHIC and LHC in relativistic collision of heavy nuclei

    Full text link
    We analyze the suppression of particle production at large transverse momenta in (050-5% most) central collisions of gold nuclei at sNN=\sqrt{s_\textrm{NN}}= 200 GeV and lead nuclei at sNN=\sqrt{s_{\textrm{NN}}}= 2.76 TeV. Full next-to-leading order radiative corrections at O(αs3){\cal{O}}(\alpha_s^3), and nuclear effects like shadowing and parton energy loss are included. The parton energy loss is implemented in a simple multiple scattering model, where the partons lose an energy ϵ=λ×dE/dx\epsilon=\lambda \times dE/dx per collision, where λ\lambda is their mean free path. We take ϵ=κE\epsilon=\kappa E for a treatment which is suggestive of the Bethe Heitler (BH) mechanism of incoherent scatterings, ϵ=αE\epsilon = \sqrt{\alpha E} for LPM mechanism, and ϵ=\epsilon= constant for a mechanism which suggests that the rate of energy loss (dE/dxdE/dx) of the partons is proportional to total path length (LL) of the parton in the plasma, as the formation time of the radiated gluon becomes much larger than LL. We find that while the BH mechanism describes the nuclear modification factor RAAR_{\textrm{AA}} for pTp_T \leq 5 GeV/cc (especially at RHIC energy), the LPM and more so the constant dE/dxdE/dx mechanism provides a good description at larger pTp_T. This confirms the earlier expectation that the energy loss mechanism for partons changes from BH to LPM for pTλp_T \ge \lambda , where λ\lambda \approx 1 fm and \approx 1 GeV2^2 is the average transverse kick-squared received by the parton per collision. The energy loss per collision at the sNN\sqrt{s_\textrm{NN}} =2.76 TeV is found to be about twice of that at 0.2 TeV.Comment: Discussion expanded, additional references added, 14 pages, 6 figures, To appear in Journal of Physics

    Particle Production at Large Transverse Momentum with ALICE

    Full text link
    We present transverse momentum distributions of inclusive charged particles and identified hadrons in pppp and Pb--Pb collisions at \rs= 2.76 TeV, measured by ALICE at the LHC. The Pb--Pb data are presented in intervals of collision centrality and cover transverse momenta up to 50 GeV/cc. Nuclear medium effects are studied in terms of the nuclear modification factor \raa. The results indicate a strong suppression of high-pTp_T particles in Pb--Pb collisions, consistent with a large energy loss of hard-scattered partons in the hot, dense and long-lived medium created at the LHC. We compare the preliminary results for inclusive charged particles to previous results from RHIC and calculations from energy loss models. Furthermore, we compare the nuclear modification factors of inclusive charged particles to those of identified π0\pi^0, π±\pi^{\pm}, Ks0^0_s, and Λ\Lambda.Comment: Talk given at Quark Matter 2011 conferenc

    Quark-Gluon Plasma at RHIC and the LHC: Perfect Fluid too Perfect?

    Full text link
    Relativistic heavy ion collisions have reached energies that enable the creation of a novel state of matter termed the quark-gluon plasma. Many observables point to a picture of the medium as rapidly equilibrating and expanding as a nearly inviscid fluid. In this article, we explore the evolution of experimental flow observables as a function of collision energy and attempt to reconcile the observed similarities across a broad energy regime in terms of the initial conditions and viscous hydrodynamics. If the initial spatial anisotropies are very similar for all collision energies from 39 GeV to 2.76 TeV, we find that viscous hydrodynamics might be consistent with the level of agreement for v2 of unidentified hadrons as a function of pT . However, we predict a strong collision energy dependence for the proton v2(pT). The results presented in this paper highlight the need for more systematic studies and a re-evaluation of previously stated sensitivities to the early time dynamics and properties of the medium.Comment: 11 pages, 9 figures, submitted to the New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas

    Jet Quenching via Jet Collimation

    Full text link
    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of q^L\hat{q}\, L that lie in the expected order of magnitude.Comment: 6 pages, 4 figure

    Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements

    Get PDF
    Proton-nucleus (p+A) collisions have long been recognized as a crucial component of the physics programme with nuclear beams at high energies, in particular for their reference role to interpret and understand nucleus-nucleus data as well as for their potential to elucidate the partonic structure of matter at low parton fractional momenta (small-x). Here, we summarize the main motivations that make a proton-nucleus run a decisive ingredient for a successful heavy-ion programme at the Large Hadron Collider (LHC) and we present unique scientific opportunities arising from these collisions. We also review the status of ongoing discussions about operation plans for the p+A mode at the LHC.Comment: 33 pages, 15 Figure

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
    corecore