8 research outputs found

    Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies.</p> <p>Methods</p> <p>Using transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders.</p> <p>Results</p> <p>The immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both <it>in vitro </it>and <it>in vivo </it>after transplantation into regenerating muscle of immunodeficient mice.</p> <p>Conclusions</p> <p>Dystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess <it>in vivo </it>the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies.</p

    Etude de la fibronectine au cours de la myogenese in vitro a partir des cellules satellites de xenope adulte

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Axon Guidance as a Random Walk, 2014 CSHL Meeting Poster

    No full text
    <p>Poster presented at the 2014 CSHL meeting "Axon Guidance, Synapse Formation & Regeneration"</p> <p> </p

    Geographical Variation of Honey Bee (Apis mellifera L. 1758) Populations in South-Eastern Morocco: A Geometric Morphometric Analysis

    No full text
    In Morocco, there are two well-recognised honey bee (Apis mellifera L.) subspecies: A. m. intermissa in the north and A. m. sahariensis in the south-east. The latter subspecies is found in the arid and semiarid climates of the Sahara Desert. In this study, we used honey bees from four areas of south-eastern Morocco which are, to some degree, isolated by arid zones. We analysed the shape and size of the forewings, using the method of geometric morphometrics. The bees from the four areas of south-eastern Morocco differed significantly in terms of wing shape. Moreover, bees from traditional hives were smaller than those from modern hives. The bees from south-eastern Morocco were clearly different from the reference samples obtained from the Morphometric Bee Data Bank in Oberursel, Germany, representing most of the global variation in honey bees. Surprisingly, the bees were also different from A. m. sahariensis, which should occur in the study area, according to earlier studies. This difference could have been caused by introgression with non-native subspecies imported by beekeepers. The distinct honey bees from south-eastern Morocco deserve to be protected. We provide a method for identifying them, which can help protect them

    The Rag2⁻Il2rb⁻Dmd⁻ mouse: a novel dystrophic and immunodeficient model to assess innovating therapeutic strategies for muscular dystrophies.

    No full text
    International audienceThe development of innovative therapeutic strategies for muscular dystrophies, particularly cell-based approaches, is still a developing field. Although positive results have been obtained in animal models, they have rarely been confirmed in patients and resulted in very limited clinical improvements, suggesting some specificity in humans. These findings emphasized the need for an appropriate animal model (i.e., immunodeficient and dystrophic) to investigate in vivo the behavior of transplanted human myogenic stem cells. We report a new model, the Rag2(-)Il2rb(-)Dmd(-) mouse, which lacks T, B, and NK cells, and also carries a mutant Dmd allele that prevents the production of any dystrophin isoform. The dystrophic features of this new model are comparable with those of the classically used mdx mouse, but with the total absence of any revertant dystrophin positive fiber. We show that Rag2(-)Il2rb(-)Dmd(-) mice allow long-term xenografts of human myogenic cells. Altogether, our findings indicate that the Rag2(-)Il2rb(-)Dmd(-) mouse represents an ideal model to gain further insights into the behavior of human myogenic stem cells in a dystrophic context, and can be used to assess innovative therapeutic strategies for muscular dystrophies
    corecore