99 research outputs found

    Radio emission of binary stars in the AB Doradus moving group

    Get PDF
    We present a study of the radio emission and kinematics of a sample of stars belonging to the AB Doradus moving group through VLA and VLBI observations. The main aim of our study is to obtain precise estimates of the dynamical mass of young, low-mass stars, which in combination with photometric measurements provide precise benchmarks for calibrating pre-main-sequence (PMS) stellar evolutionary models. Calibration of PMS models appears essential as they are widely used to predict the masses of low mass objects as brown dwarfs and planets. Previous studies show that model predictions are in disagreement with experimental results for masses below 1.2 solar masses. Among the stars included in our study, we emphasize the results obtained in two of them: AB Dor B and HD 160934. We observed the binary system AB Dor B in three different epochs between 2007 and 2013 with the Australian Long Baseline Array (LBA) at a frequency of 8.4 GHz. We detected, for the first time, compact radio emission from both stars in the binary, AB Dor Ba and AB Dor Bb. This result allowed us to determine the orbital parameters of both the relative and absolute orbits and, consequently, their individual dynamical masses: 0.28+/-0.05 solar masses and 0.25+/-0.05 solar masses, respectively. Comparisons of the dynamical masses with the prediction of PMS evolutionary models show that the models underpredict the dynamical masses of the binary components Ba and Bb by 10-30% and 10-40%, respectively, although they still agree at the 2-sigma level. Some of the stellar models considered favor an age between 50 and 100 Myr for this system, while others predict older ages. Simultaneously with AB Dor B, we also observed the well-known stellar system AB Dor A, only 9 arcsec apart and composed by the stars AB Dor A itself and AB Dor C. The new data allowed us to revisit the previously published values of both the orbital parameters and dynamical masses. In particular, we found component masses of 0.894+/-0.040 solar masses and 0.090+/-0.005 solar masses for AB Dor A and AB Dor C, respectively, that allowed us for comparison with theoretical stellar models. In the case of AB Dor A, the models predict good estimates within the uncertainties, favouring an early age between 35-50 Myr. In the case of AB Dor C, the models derive a mass similar to the dynamical mass and an age between 40 and 120 Myr. Regarding HD 160934, we observed this system with the European VLBI Network (EVN) at 5 GHz in three different epochs between 2012 and 2014. We showed that the two components of the binary, HD 160934 A and HD 160934 c, display compact radio emission at VLBI scales, providing precise information on the relative and absolute orbits, which were analyzed in combination with previously reported orbital measurements. Revised orbital elements were estimated and individual masses of 0.70+/-0.07 solar masses and 0.45+/-0.04 solar masses for components A and c, respectively, were determined. Theoretical models predict masses for the component A approximately 10% lower than our dynamical value; likewise the predictions for the component c are 20-40% lower than our dynamical measurement. The age of the system varies between 40 and 65 Myr depending on models. Other stars in our sample include EK Dra, LO Peg, and PW And, observed with the EVN at 5 GHz. EK Dra and PW And showed compact radio emission at milliarcsecond scales, meanwhile LO Peg, appeared to be "off" at the time of observations. The scarce number of detections prevented us to obtain estimates of their masses, however, they allowed us to set bounds to their kinematics. Complementary, companion infrared observations of EK Dra has led us to a revision of the orbital parameters of this system. In summary, our project provides new observational data to calibrate stellar evolutionary models of PMS objects, supporting the evidence that these models tend to underestimate the dynamical masses. The arrival of new, more sensitive telescopes with enormous monitoring capacity will allow a comprehensive study of the radio emission present in the moving groups found so far, definitely increasing the number of PMS stars with masses dynamically determined

    The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

    Get PDF
    Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images

    Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

    Get PDF
    Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10-100 gravitational radii (rg = GM/c2) scales in nearby sources. Centaurus A is the closest radio-loud source to Earth. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43deg has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A's SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source's event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole

    Get PDF
    When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible

    New constraints on the presence of debris disks around G 196-3 B and VHS J125601.92–125723.9 b

    Get PDF
    Context. The existence of warm (protoplanetary) disks around very young isolated planetary and brown dwarf mass objects is known based on near- and mid-infrared flux excesses and millimeter observations. These disks may later evolve into debris disks or rings, although none have been observed or confirmed so far. Little is known about circum(sub)stellar and debris disks around substellar objects. Aims. We aim to investigate the presence of debris disks around two of the closest (~20 pc), young substellar companions, namely G196-3 B and VHS J125601.92–125723.9 b (VHS J1256–1257 b), whose masses straddle the borderline between planets and brown dwarfs. Both are companions at wide orbits (≥100 au) of M-type dwarfs and their ages (50–100 Myr and 150–300 Myr, respectively) are thought to be adequate for the detection of second-generation disks. Methods. We obtained deep images of G196-3 B and VHS J1256–1257 b with the NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm. These data were combined with recently published Atacama Large Millimeter Array (ALMA) and Very Large Array (VLA) data of VHS J1256–1257 b at 0.87 mm and 0.9 cm, respectively. Results. Neither G196-3 B nor VHS J1256–1257 b were detected in the NOEMA, ALMA, and VLA data. At 1.3 mm, we imposed flux upper limits of 0.108 mJy (G196-3 B) and 0.153 mJy (VHS J1256–1257 b) with a 3-σ confidence. Using the flux upper limits at the millimeter and radio wavelength regimes, we derived maximum values of 1.38×10−2 MEarth and 5.46 × 10−3 MEarth for the mass of any cold dust that might be surrounding G196-3 B and VHS J1256–1257 b, respectively. Conclusions. We put our results in the context of other deep millimeter observations of free-floating and companion objects with substellar masses smaller than 20 MJup and ages between approximately one and a few hundred million years. Only two very young (2–5.4 Myr) objects are detected out of a few tens of them. This implies that the disks around these very low-mass objects must have small masses, and possibly reduced sizes, in agreement with findings by other groups. If debris disks around substellar objects scale down (in mass and size) in a similar manner as protoplanetary disks do, millimeter observations of moderately young brown dwarfs and planets must be at least two orders of magnitude deeper to be able to detect and characterize their surrounding debris disks

    Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of ∼40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole

    Get PDF
    We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions

    Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009–2017 to be consistent with a persistent asymmetric ring of ~40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

    Get PDF
    We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to b
    • …
    corecore