376 research outputs found

    Bilateral Weighted Adaptive Local Similarity Measure for Registration in Neurosurgery

    Get PDF
    Image-guided neurosurgery involves the display of MRI-based preoperative plans in an intraoperative reference frame. Interventional MRI (iMRI) can serve as a reference for non-rigid registration based propagation of preoperative MRI. Structural MRI images exhibit spatially varying intensity relationships, which can be captured by a local similarity measure such as the local normalized correlation coefficient (LNCC). However, LNCC weights local neighborhoods using a static spatial kernel and includes voxels from beyond a tissue or resection boundary in a neighborhood centered inside the boundary. We modify LNCC to use locally adaptive weighting inspired by bilateral filtering and evaluate it extensively in a numerical phantom study, a clinical iMRI study and a segmentation propagation study. The modified measure enables increased registration accuracy near tissue and resection boundaries

    Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging.

    Get PDF
    Surgical treatment of focal epilepsy in patients with focal cortical dysplasia (FCD) is most successful if all epileptogenic tissue is resected. This may not be evident on structural magnetic resonance imaging (MRI), so intracranial electroencephalography (icEEG) is needed to delineate the seizure onset zone (SOZ). EEG-functional MRI (fMRI) can reveal interictal discharge (IED)-related hemodynamic changes in the irritative zone (IZ). We assessed the value of EEG-fMRI in patients with FCD-associated focal epilepsy by examining the relationship between IED-related hemodynamic changes, icEEG findings, and postoperative outcome

    Acquisition of sensorimotor fMRI under general anaesthesia: Assessment of feasibility, the BOLD response and clinical utility

    Get PDF
    We evaluated whether task-related fMRI (functional magnetic resonance imaging) BOLD (blood oxygenation level dependent) activation could be acquired under conventional anaesthesia at a depth enabling neurosurgery in five patients with supratentorial gliomas. Within a 1.5 T MRI operating room immediately prior to neurosurgery, a passive finger flexion sensorimotor paradigm was performed on each hand with the patients awake, and then immediately after the induction and maintenance of combined sevoflurane and propofol general anaesthesia. The depth of surgical anaesthesia was measured and confirmed with an EEG-derived technique, the Bispectral Index (BIS). The magnitude of the task-related BOLD response and BOLD sensitivity under anaesthesia were determined. The fMRI data were assessed by three fMRI expert observers who rated each activation map for somatotopy and usefulness for radiological neurosurgical guidance. The mean magnitudes of the task-related BOLD response under a BIS measured depth of surgical general anaesthesia were 25% (tumour affected hemisphere) and 22% (tumour free hemisphere) of the respective awake values. BOLD sensitivity under anaesthesia ranged from 7% to 83% compared to the awake state. Despite these reductions, somatotopic BOLD activation was observed in the sensorimotor cortex in all ten data acquisitions surpassing statistical thresholds of at least p < 0.001uncorr. All ten fMRI activation datasets were scored to be useful for radiological neurosurgical guidance. Passive task-related sensorimotor fMRI acquired in neurosurgical patients under multi-pharmacological general anaesthesia is reproducible and yields clinically useful activation maps. These results demonstrate the feasibility of the technique and its potential value if applied intra-operatively. Additionally these methods may enable fMRI investigations in patients unable to perform or lie still for awake paradigms, such as young children, claustrophobic patients and those with movement disorders

    Enterovirus specific anti-peptide antibodies

    Get PDF
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot, and mouth disease (HFMD) which is generally regarded as a mild childhood disease. In recent years, EV71 has emerged as a significant pathogen capable of causing high mortalities and severe neurological complications in large outbreaks in Asia. A formalin-inactivated EV71 whole virus vaccine has completed phase III trial in China but is currently unavailable clinically. The high cost of manufacturing and supply problems may limit practical implementations in developing countries. Synthetic peptides representing the native primary structure of the viral immunogen which is able to elicit neutralizing antibodies can be made readily and is cost effective. However, it is necessary to conjugate short synthetic peptides to carrier proteins to enhance their immunogenicity. This review describes the production of cross-neutralizing anti-peptide antibodies in response to immunization with synthetic peptides selected from in silico analysis, generation of B-cell epitopes of EV71 conjugated to a promiscuous T-cell epitope from Poliovirus, and evaluation of the neutralizing activities of the anti-peptide antibodies. Besides neutralizing EV71 in vitro, the neutralizing antibodies were cross-reactive against several Enteroviruses including CVA16, CVB4, CVB6, and ECHO13

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Extensor tendon release in tennis elbow: results and prognostic factors in 80 elbows

    Get PDF
    Purpose The objectives of this study were to evaluate the results in the outpatient treatment of recalcitrant lateral epicondylitis with release of the common extensor origin according to Hohmann and to determine any prognostic factors. Methods Eighty tennis elbows in 77 patients with a characteristic history of activity-related pain at the lateral epicondyle interfering with the activities of daily living refractory to conservative care for at least 6 months and a confirmatory physical examination were included. Clinical outcome was evaluated using the QuickDASH score system. Data were collected before the operation and at the medians of 18 months (range 6–36 months; short term) and 4 years (range 3–6 years; medium term) postoperatively. Results The mean QuickDASH was improved both at the short- and the medium-term follow-ups and did not change significantly between the follow-ups. At the final followup, the QuickDASH was improved in 78 out of 80 elbows and 81% was rated as excellent or good (QuickDASH\40 points). We found a weak correlation between residual symptoms (a high QuickDASH score) at the final follow-up and high level of baseline symptoms (r = 0.388), acute occurrence of symptoms (r = 0.362), long duration of symptoms (r = 0.276), female gender (r = 0.269) and young age (r = 0.203), whereas occurrence in dominant arm, a work-related cause or strenuous work did not correlate significantly with the outcome. Conclusion Open lateral extensor release performed as outpatient surgery results in improved clinical outcome at both short- and medium-term follow-ups with few complications. High baseline disability, sudden occurrence of symptoms, long duration of symptoms, female gender and young age were found to be weak predictors of poor outcome

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Metal-organic framework glasses with permanent accessible porosity.

    Get PDF
    To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability

    A novel hybrid promoter responsive to pathophysiological and pharmacological regulation

    Get PDF
    The aim of this study was to construct a promoter containing DNA motifs for an endogenous transcription factor associated with inflammation along with motifs for pharmacological regulation factors. We demonstrate in transfected cells that expression of a gene of interest is induced by hypoxic conditions or through pharmacological induction, and also show pharmacological repression. In vivo studies utilised electroporation of plasmid to mouse paws, a delivery method shown to be effective by bioluminescence imaging. For gene therapy, the promoter was used to drive expression of IL-1Ra in a paw inflammation model with therapeutic effect observed which was further enhanced when the promoter was additionally induced with a pharmacological activator. One of the most important observations from this study was that promoter induction by hypoxia or inflammation could be prevented by the pharmacological repressor in the absence of doxycycline. These studies demonstrate that hybrid promoters enable pharmacological adjustment to the pathophysiological level of gene expression and, importantly, that they allow termination of gene expression even in the presence of pathophysiological stimuli
    corecore