688 research outputs found
A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy
Dwarf satellite galaxies are thought to be the remnants of the population of
primordial structures that coalesced to form giant galaxies like the Milky Way.
An early analysis noted that dwarf galaxies may not be isotropically
distributed around our Galaxy, as several are correlated with streams of HI
emission, and possibly form co-planar groups. These suspicions are supported by
recent analyses, and it has been claimed that the apparently planar
distribution of satellites is not predicted within standard cosmology, and
cannot simply represent a memory of past coherent accretion. However, other
studies dispute this conclusion. Here we report the existence (99.998%
significance) of a planar sub-group of satellites in the Andromeda galaxy,
comprising approximately 50% of the population. The structure is vast: at least
400 kpc in diameter, but also extremely thin, with a perpendicular scatter
<14.1 kpc (99% confidence). Radial velocity measurements reveal that the
satellites in this structure have the same sense of rotation about their host.
This finding shows conclusively that substantial numbers of dwarf satellite
galaxies share the same dynamical orbital properties and direction of angular
momentum, a new insight for our understanding of the origin of these most dark
matter dominated of galaxies. Intriguingly, the plane we identify is
approximately aligned with the pole of the Milky Way's disk and is co-planar
with the Milky Way to Andromeda position vector. The existence of such
extensive coherent kinematic structures within the halos of massive galaxies is
a fact that must be explained within the framework of galaxy formation and
cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1
three-dimensional interactive figure. To view and manipulate the 3-D figure,
an Adobe Reader browser plug-in is required; alternatively save to disk and
view with Adobe Reade
Patient-maintained sedation for oral surgery using a target-controlled infusion of propofol - a pilot study
OBJECTIVE: To assess the safety and efficacy of a new patient-maintained propofol system for conscious sedation in dentistry. DESIGN: Prospective clinical trial SETTING: Department of Sedation, Glasgow Dental Hospital and School, 2001 SUBJECTS AND METHODS: Patients scheduled for oral surgery with conscious sedation. Exclusions included ASA IV -V, inability to use the handset, opioid use and severe respiratory disease. INTERVENTIONS: Patients were given intravenous propofol to a level of 1.0 microg/ml (reducing from 1.5 microg/ml) using a target controlled infusion system, they then controlled their sedation level by double-clicking a handset which on each activation increased the propofol concentration by 0.2 microg/ml. MAIN OUTCOME MEASURES: Oxygen saturation, patient satisfaction, and surgeon satisfaction. RESULTS: Twenty patients were recruited, 16 female and four male. Nineteen patients completed sedation and treatment successfully. Mean lowest oxygen saturation was 94%. No patients were over-sedated. All patients successfully used the system to maintain a level of sedation adequate for their comfort. Patient and surgeon satisfaction were consistently high. CONCLUSIONS: Initial experience with this novel system has confirmed safety, patient satisfaction and surgeon satisfaction
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics
The background-limited spectral imaging of the early Universe requires
spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of
magnitude better than that of the state-of-the-art bolometers. To realize this
sensitivity without sacrificing operating speed, novel detector designs should
combine an ultrasmall heat capacity of a sensor with its unique thermal
isolation. Quantum effects in thermal transport at nanoscale put strong
limitations on the further improvement of traditional membrane-supported
bolometers. Here we demonstrate an innovative approach by developing
superconducting hot-electron nanobolometers in which the electrons are cooled
only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon
thermal conductance in these nanodevices becomes less than one percent of the
quantum of thermal conductance. The hot-electron nanobolometers, sufficiently
sensitive for registering single THz photons, are very promising for
submillimeter astronomy and other applications based on quantum calorimetry and
photon counting.Comment: 19 pages, 3 color figure
Health-related quality of life of children with attention-deficit/hyperactivity disorder versus children with diabetes and healthy controls
The impact of attention-deficit/hyperactivity disorder (ADHD) on health-related quality of life (HRQoL) is reported to be similar to that of other mental health and physical disorders. In this cross-sectional study, we hypothesized that children with ADHD and children with type 1 diabetes mellitus (T1DM) would have significantly worse HRQoL compared with healthy children, and that better clinical status in ADHD and T1DM would be associated with better HRQoL. Children were recruited from three outpatient services in Scotland. Responses to two frequently used validated HRQoL instruments, the Paediatric Quality of Life Inventory (PedsQL) and Child Health and Illness Profile-child edition (CHIP-CE), were obtained from parents/carers and children (6–16 years) with/without ADHD or T1DM. Child and parent/carer-completed HRQoL measurements were evaluated for 213 children with ADHD, 58 children with T1DM and 117 healthy children (control group). Significantly lower self and parent/carer ratings were observed across most PedsQL (P < 0.001) and CHIP-CE (P < 0.05) domains (indicating reduced HRQoL) for the ADHD group compared with the T1DM and control groups. Parent/carer and child ratings were significantly correlated for both measures of HRQoL (PedsQL total score: P < 0.001; CHIP-CE all domains: P < 0.001), but only with low-to-moderate strength. Correlation between ADHD severity and HRQoL was significant with both PedsQL and CHIP-CE for all parent/carer (P < 0.01) and most child (P < 0.05) ratings; more ADHD symptoms were associated with poorer HRQoL. These data demonstrate that ADHD has a significant impact on HRQoL (as observed in both parent/carer and child ratings), which seems to be greater than that for children with T1DM
Cold gas accretion in galaxies
Evidence for the accretion of cold gas in galaxies has been rapidly
accumulating in the past years. HI observations of galaxies and their
environment have brought to light new facts and phenomena which are evidence of
ongoing or recent accretion:
1) A large number of galaxies are accompanied by gas-rich dwarfs or are
surrounded by HI cloud complexes, tails and filaments. It may be regarded as
direct evidence of cold gas accretion in the local universe. It is probably the
same kind of phenomenon of material infall as the stellar streams observed in
the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI
have been found in nearby spiral galaxies. While a large fraction of this gas
is produced by galactic fountains, it is likely that a part of it is of
extragalactic origin. 3) Spirals are known to have extended and warped outer
layers of HI. It is not clear how these have formed, and how and for how long
the warps can be sustained. Gas infall has been proposed as the origin. 4) The
majority of galactic disks are lopsided in their morphology as well as in their
kinematics. Also here recent accretion has been advocated as a possible cause.
In our view, accretion takes place both through the arrival and merging of
gas-rich satellites and through gas infall from the intergalactic medium (IGM).
The infall may have observable effects on the disk such as bursts of star
formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold
gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates
needed to sustain the observed star formation (~1 Msol/yr), additional infall
of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages.
Full-resolution version available at
http://www.astron.nl/~oosterlo/accretionRevie
The remnants of galaxy formation from a panoramic survey of the region around M31
In hierarchical cosmological models, galaxies grow in mass through the
continual accretion of smaller ones. The tidal disruption of these systems is
expected to result in loosely bound stars surrounding the galaxy, at distances
that reach times the radius of the central disk. The number,
luminosity and morphology of the relics of this process provide significant
clues to galaxy formation history, but obtaining a comprehensive survey of
these components is difficult because of their intrinsic faintness and vast
extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We
detect stars and coherent structures that are almost certainly remnants of
dwarf galaxies destroyed by the tidal field of M31. An improved census of their
surviving counterparts implies that three-quarters of M31's satellites brighter
than await discovery. The brightest companion, Triangulum (M33), is
surrounded by a stellar structure that provides persuasive evidence for a
recent encounter with M31. This panorama of galaxy structure directly confirms
the basic tenets of the hierarchical galaxy formation model and reveals the
shared history of M31 and M33 in the unceasing build-up of galaxies.Comment: Published in Nature. Supplementary movie available at
https://www.astrosci.ca/users/alan/PANDAS/Latest%20news%3A%20movie%20of%20orbit.htm
Pseudo-acetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity
Tau is a microtubule-associated protein that is highly soluble and natively unfolded. Its dysfunction is involved in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease (AD), where it aggregates within neurons. Deciphering the physiological and pathogenic roles of human Tau (hTau) is crucial to further understand the mechanisms leading to its dysfunction in vivo. We have used a knock-out/knock-in strategy in Drosophila to generate a strain with hTau inserted into the endogenous fly tau locus and expressed under the control of the endogenous fly tau promoter, thus avoiding potential toxicity due to genetic over-expression. hTau knock-in (KI) proteins were expressed at normal, endogenous levels, bound to fly microtubules and were post-translationally modified, hence displaying physiological properties. We used this new model to investigate the effects of acetylation on hTau toxicity in vivo. The simultaneous pseudo-acetylation of hTau at lysines 163, 280, 281 and 369 drastically decreased hTau phosphorylation and significantly reduced its binding to microtubules in vivo. These molecular alterations were associated with ameliorated amyloid beta toxicity. Our results indicate acetylation of hTau on multiple sites regulates its biology and ameliorates amyloid beta toxicity in vivo
Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes
Conservation of geosites as a tool to protect geoheritage: the inventory of Ceará Central Domain, Borborema Province - NE/Brazil
The Ceará Central Domain, in the northern Borborema Province/NE Brazil, encompasses important geological records (geosites) which allow understanding a relevant period of the Earth’s evolution, mainly associated to Neoproterozoic Brazilian/Pan-African Cycle and West Gondwana amalgamation, besides Neoarchean to Ordovician records. The presented geoheritage inventory aims to characterise the geosites with scienti c relevance of Ceará Central Domain. By applying a method for large areas, the nal selection resulted in eight geological frameworks represented by 52 geosites documented in a single database. This is the rst step for a geoconservation strategy based on systematic inventories, statutory protection, geoethical behaviour and awareness about scienti c, educational and/or cultural relevance of geosites.We specially thank all experts that helped us with
this inventory: Afonso Almeida, Carlos E.G. de
Araújo, César Veríssimo, Christiano Magini, Clóvis
Vaz Parente, Felipe G. Costa, Irani C. Mattos,
Neivaldo de Castro, Otaciel de Melo, Sebástian G.
Chiozza, Ticiano Santos and Stefano Zincone. We
are also thankful to Kátia Mansur, Ricardo Fraga
Pereira and anonymous reviewers for their valuable
contributions. PM is grateful to Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) for PhD mobility scholarship PDSE
Program/Process n 88881.132168/2016-01info:eu-repo/semantics/publishedVersio
- …
