17,823 research outputs found
Once more on the Witten index of 3d supersymmetric YM-CS theory
The problem of counting the vacuum states in the supersymmetric 3d
Yang-Mills-Chern-Simons theory is reconsidered. We resolve the controversy
between its original calculation by Witten at large volumes and the calculation
based on the evaluation of the effective Lagrangian in the small volume limit.
We show that the latter calculation suffers from uncertainties associated with
the singularities in the moduli space of classical vacua where the
Born-Oppenheimer approximation breaks down. We also show that these
singularities can be accurately treated in the Hamiltonian Born-Oppenheimer
method, where one has to match carefully the effective wave functions on the
Abelian valley and the wave functions of reduced non-Abelian QM theory near the
singularities. This gives the same result as original Witten's calculation.Comment: 27 page
Measuring the Decorrelation Times of Fourier Modes in Simulations
We describe a method to study the rate at which modes decorrelate in
numerical simulations. We study the XY model updated with the Metropolis and
Wolff dynamics respectively and compute the rate at which each eigenvector of
the dynamics decorrelates. Our method allows us to identify the decorrelation
time for each mode separately. We find that the autocorrelation function of the
various modes is markedly different for the `local' Metropolis compared to the
`non-local' Wolff dynamics. Equipped with this new insight, it may be possible
to devise highly efficient algorithms.Comment: 16 pp (LaTeX), PUPT-1378 , IASSNS-HEP-93/
On right conjugacy closed loops of twice prime order
The right conjugacy closed loops of order 2p, where p is an odd prime, are
classified up to isomorphism.Comment: Clarified definitions, added some remarks and a tabl
Resonant Josephson current through a quantum dot
We calculate the DC Josephson current through a semiconducting quantum dot
which is weakly coupled by tunnel barriers to two superconducting reservoirs. A
Breit-Wigner resonance in the conductance corresponds to a resonance in the
critical current, but with a different (non-lorentzian) lineshape.Comment: 5 pages including 1 figure; this paper was published in the
proceedings of SQUID'91; it is archived here because of its relevance to
cond-mat/011148
Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene
The remarkable electronic properties of graphene have fueled the vision of a
graphene-based platform for lighter, faster and smarter electronics and
computing applications. One of the challenges is to devise ways to tailor its
electronic properties and to control its charge carriers. Here we show that a
single atom vacancy in graphene can stably host a local charge and that this
charge can be gradually built up by applying voltage pulses with the tip of a
scanning tunneling microscope (STM). The response of the conduction electrons
in graphene to the local charge is monitored with scanning tunneling and Landau
level spectroscopy, and compared to numerical simulations. As the charge is
increased, its interaction with the conduction electrons undergoes a transition
into a supercritical regime 6-11 where itinerant electrons are trapped in a
sequence of quasi-bound states which resemble an artificial atom. The
quasi-bound electron states are detected by a strong enhancement of the density
of states (DOS) within a disc centered on the vacancy site which is surrounded
by halo of hole states. We further show that the quasi-bound states at the
vacancy site are gate tunable and that the trapping mechanism can be turned on
and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary
information. Nature Physics advance online publication, Feb 22 (2016
Recommended from our members
Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme
Laser-driven ion acceleration has been an active research area in the past two decades with the prospects of designing novel and compact ion accelerators. Many potential applications in science and industry require high-quality, energetic ion beams with low divergence and narrow energy spread. Intense laser ion acceleration research strives to meet these challenges and may provide high charge state beams, with some successes for carbon and lighter ions. Here we demonstrate the generation of well collimated, quasi-monoenergetic titanium ions with energies ∼145 and 180 MeV in experiments using the high-contrast(<10-9) and high-intensity (6× 1020 W cm-2) Trident laser and ultra-Thin (∼100 nm) titanium foil targets. Numerical simulations show that the foils become transparent to the laser pulses, undergoing relativistically induced transparency (RIT), resulting in a two-stage acceleration process which lasts until ∼2 ps after the onset of RIT. Such long acceleration time in the self-generated electric fields in the expanding plasma enables the formation of the quasi-monoenergetic peaks. This work contributes to the better understanding of the acceleration of heavier ions in the RIT regime, towards the development of next generation laser-based ion accelerators for various applications
Tumor Epithelial Cell Matrix Metalloproteinase 9 (MMP-9) is a Prognostic Marker in Colorectal Cancer
Presented at American Association Cancer Research in 2008
Zuzga D.S., Gibbons A.V., Li P., Lubbe W.J., Chervoneva I., Pitari G.M. “Tumor epithelial cell MMP-9 is a prognostic marker in colorectal cancer”. In: American Association for Cancer Research Special Conference, Molecular Diagnostics in Cancer Therapeutic Development: Proceedings; 2008 Sept 22-25; Philadelphia, PA. Abstract A40.
Colorectal cancer is the second leading cause of cancer-related mortality indeveloped nations. Mortality from colon cancer largely reflects metastasis, thespread of the disease to distant sites. Early diagnosis of pre-metastatic diseaseand accurate stratification of patients with metastasis is pivotal to decreasemortality rates from colon cancer by effectively administering surgery alone orwith chemotherapy. However, specific pathological markers of colorectal cancermetastasis have not emerged. Matrix metalloproteinase 9 (MMP-9) is a keyregulator of metastasis and a therapeutic target in colon cancer. Here, MMP-9overexpression in pure tumor epithelial, but nor stromal, cell populations frompatients was associated with metastatic colorectal cancer progression as definedby RT-PCR and confirmed by immunostaining. Thus, tumors with increasedMMP-9 expression compared to matched normal adjacent tissues alwaysexhibited metastatic dissemination. In particular, MMP-9 overexpression in tumorepithelial cells, compared to normal epithelial cells, specifically predicted lymphnode involvement. Importantly, patients with relative increase of MMP-9 levels intumor epithelial cells were characterized by more advanced disease stages, withsignificantly higher proportion of regional lymph nodes harboring metastasis,compared to patients with a relative decrease in MMP-9 expression. Together,these observations suggest tumor epithelial cell MMP-9 is a novel prognosticmarker that may be exploited for more efficient disease stage stratification andtherapeutic regimen selection in patients with colorectal cancer
Multigrid Methods in Lattice Field Computations
The multigrid methodology is reviewed. By integrating numerical processes at
all scales of a problem, it seeks to perform various computational tasks at a
cost that rises as slowly as possible as a function of , the number of
degrees of freedom in the problem. Current and potential benefits for lattice
field computations are outlined. They include: solution of Dirac
equations; just operations in updating the solution (upon any local
change of data, including the gauge field); similar efficiency in gauge fixing
and updating; operations in updating the inverse matrix and in
calculating the change in the logarithm of its determinant; operations
per producing each independent configuration in statistical simulations
(eliminating CSD), and, more important, effectively just operations per
each independent measurement (eliminating the volume factor as well). These
potential capabilities have been demonstrated on simple model problems.
Extensions to real life are explored.Comment: 4
Combinatorial Hopf algebras and Towers of Algebras
Bergeron and Li have introduced a set of axioms which guarantee that the
Grothendieck groups of a tower of algebras can be
endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap,
and independently Lam and Shimozono constructed dual graded graphs from
primitive elements in Hopf algebras. In this paper we apply the composition of
these constructions to towers of algebras. We show that if a tower
gives rise to graded dual Hopf algebras then we must
have where .Comment: 7 page
A low energy core-collapse supernova without a hydrogen envelope
The final fate of massive stars depends on many factors, including mass,
rotation rate, magnetic fields and metallicity. Theory suggests that some
massive stars (initially greater than 25-30 solar masses) end up as Wolf-Rayet
stars which are deficient in hydrogen because of mass loss through strong
stellar winds. The most massive of these stars have cores which may form a
black hole and theory predicts that the resulting explosion produces ejecta of
low kinetic energy, a faint optical display and a small mass fraction of
radioactive nickel(1,2,3). An alternative origin for low energy supernovae is
the collapse of the oxygen-neon core of a relatively lowmass star (7-9 solar
masses) through electron capture(4,5). However no weak, hydrogen deficient,
core-collapse supernovae are known. Here we report that such faint, low energy
core-collapse supernovae do exist, and show that SN2008ha is the faintest
hydrogen poor supernova ever observed. We propose that other similar events
have been observed but they have been misclassified as peculiar thermonuclear
supernovae (sometimes labelled SN2002cx-like events(6)). This discovery could
link these faint supernovae to some long duration gamma-ray bursts. Extremely
faint, hydrogen-stripped core-collapse supernovae have been proposed to produce
those long gamma-ray bursts whose afterglows do not show evidence of
association with supernovae (7,8,9).Comment: Submitted 12 January 2009 - Accepted 24 March 200
- …
