The remarkable electronic properties of graphene have fueled the vision of a
graphene-based platform for lighter, faster and smarter electronics and
computing applications. One of the challenges is to devise ways to tailor its
electronic properties and to control its charge carriers. Here we show that a
single atom vacancy in graphene can stably host a local charge and that this
charge can be gradually built up by applying voltage pulses with the tip of a
scanning tunneling microscope (STM). The response of the conduction electrons
in graphene to the local charge is monitored with scanning tunneling and Landau
level spectroscopy, and compared to numerical simulations. As the charge is
increased, its interaction with the conduction electrons undergoes a transition
into a supercritical regime 6-11 where itinerant electrons are trapped in a
sequence of quasi-bound states which resemble an artificial atom. The
quasi-bound electron states are detected by a strong enhancement of the density
of states (DOS) within a disc centered on the vacancy site which is surrounded
by halo of hole states. We further show that the quasi-bound states at the
vacancy site are gate tunable and that the trapping mechanism can be turned on
and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary
information. Nature Physics advance online publication, Feb 22 (2016