The final fate of massive stars depends on many factors, including mass,
rotation rate, magnetic fields and metallicity. Theory suggests that some
massive stars (initially greater than 25-30 solar masses) end up as Wolf-Rayet
stars which are deficient in hydrogen because of mass loss through strong
stellar winds. The most massive of these stars have cores which may form a
black hole and theory predicts that the resulting explosion produces ejecta of
low kinetic energy, a faint optical display and a small mass fraction of
radioactive nickel(1,2,3). An alternative origin for low energy supernovae is
the collapse of the oxygen-neon core of a relatively lowmass star (7-9 solar
masses) through electron capture(4,5). However no weak, hydrogen deficient,
core-collapse supernovae are known. Here we report that such faint, low energy
core-collapse supernovae do exist, and show that SN2008ha is the faintest
hydrogen poor supernova ever observed. We propose that other similar events
have been observed but they have been misclassified as peculiar thermonuclear
supernovae (sometimes labelled SN2002cx-like events(6)). This discovery could
link these faint supernovae to some long duration gamma-ray bursts. Extremely
faint, hydrogen-stripped core-collapse supernovae have been proposed to produce
those long gamma-ray bursts whose afterglows do not show evidence of
association with supernovae (7,8,9).Comment: Submitted 12 January 2009 - Accepted 24 March 200