6,875 research outputs found

    Time Reversal Violation from the entangled B0-antiB0 system

    Full text link
    We discuss the concepts and methodology to implement an experiment probing directly Time Reversal (T) non-invariance, without any experimental connection to CP violation, by the exchange of "in" and "out" states. The idea relies on the B0-antiB0 entanglement and decay time information available at B factories. The flavor or CP tag of the state of the still living neutral meson by the first decay of its orthogonal partner overcomes the problem of irreversibility for unstable systems, which prevents direct tests of T with incoherent particle states. T violation in the time evolution between the two decays means experimentally a difference between the intensities for the time-ordered (l^+ X, J/psi K_S) and (J/psi K_L, l^- X) decays, and three other independent asymmetries. The proposed strategy has been applied to simulated data samples of similar size and features to those currently available, from which we estimate the significance of the expected discovery to reach many standard deviations.Comment: 17 pages, 2 figures, 6 table

    An Improved Standard Model Prediction Of BR(B -> tau nu) And Its Implications For New Physics

    Full text link
    The recently measured B -> tau nu branching ratio allows to test the Standard Model by probing virtual effects of new heavy particles, such as a charged Higgs boson. The accuracy of the test is currently limited by the experimental error on BR(B -> tau nu) and by the uncertainty on the parameters fB and |Vub|. The redundancy of the Unitarity Triangle fit allows to reduce the error on these parameters and thus to perform a more precise test of the Standard Model. Using the current experimental inputs, we obtain BR(B -> tau nu)_SM = (0.84 +- 0.11)x10^{-4}, to be compared with BR(B -> tau nu)_exp = (1.73 +- 0.34)x10^{-4}. The Standard Model prediction can be modified by New Physics effects in the decay amplitude as well as in the Unitarity Triangle fit. We discuss how to disentangle the two possible contributions in the case of minimal flavour violation at large tan beta and generic loop-mediated New Physics. We also consider two specific models with minimal flavour violation: the Type-II Two Higgs Doublet Model and the Minimal Supersymmetric Standard Model.Comment: 7 pages, 13 figures, 1 table. v2: added references and discussion of B -> D tau nu in the 2HDM. v3: added Bs->mumu in the 2HDM. Final version to appear in PL

    Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields

    Full text link
    The exciton spin dynamics and polarization properties of the related emission are investigated in colloidal CdSe/CdS dot-in-rod (DiR) and spherical core/shell nanocrystal (NC) ensembles by magneto-optical photoluminescence (PL) spectroscopy in magnetic fields up to 15 T. It is shown that the degree of circular polarization (DCP) of the exciton emission induced by the magnetic field is affected by the NC geometry as well as the exciton fine structure and can provide information on nanorod orientation. A theory to describe the circular and linear polarization properties of the NC emission in magnetic field is developed. It takes into account phonon mediated coupling between the exciton fine structure states as well as the dielectric enhancement effect resulting from the anisotropic shell of DiR NCs. This theoretical approach is used to model the experimental results and allows us to explain most of the measured features. The spin dynamics of the dark excitons is investigated in magnetic fields by time-resolved photoluminescence. The results highlight the importance of confined acoustic phonons in the spin relaxation of dark excitons. The bare core surface as well as the core/shell interface give rise to an efficient spin relaxation channel, while the surface of core/shell NCs seems to play only a minor role.Comment: 18 pages, 15 figure

    Strong and Weak Phases from Time-Dependent Measurements of BππB \to \pi \pi

    Full text link
    Time-dependence in B0(t)π+πB^0(t) \to \pi^+ \pi^- and \ob(t) \to \pi^+ \pi^- is utilized to obtain a maximal set of information on strong and weak phases. One can thereby check theoretical predictions of a small strong phase δ\delta between penguin and tree amplitudes. A discrete ambiguity between δ0\delta \simeq 0 and δπ\delta \simeq \pi may be resolved by comparing the observed charge-averaged branching ratio predicted for the tree amplitude alone, using measurements of BπlνB \to \pi l \nu and factorization, or by direct comparison of parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix with those determined by other means. It is found that with 150 fb1^{-1} from BaBar and Belle, this ambiguity will be resolvable if no direct CP violation is found. In the presence of direct CP violation, the discrete ambiguity between δ\delta and πδ\pi - \delta becomes less important, vanishing altogether as δπ/2|\delta| \to \pi/2. The role of measurements involving the lifetime difference between neutral BB eigenstates is mentioned briefly.Comment: 14 pages, LaTeX, 5 figures, to be published in Phys. Rev. D. Updated version with one reference change

    Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects.

    Get PDF
    We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis

    CP Tagged Decays at SuperBaBar

    Get PDF
    We explore the possibility of measuring the CKM parameter gamma using CP tagged decays at a very high luminosity e+e- B Factory. A new collider capable of integrating as much as 10 inverse attobarns per year is being discussed as a possible future for SLAC beyond the current PEP-II program, and could also be in the future of KEK. In two years of operation, it could be possible for a successor to BaBar or Belle to accumulate a sample of one million CP tagged B decays. We find that a theoretically clean extraction of gamma with uncertainty less than 5 degrees may be achievable in the analysis of such a data set.Comment: 14 pages, 4 figures; minimal revisions for version to appear in Physical Review D, all formulas and conclusions unchange

    The Semileptonic BB to K1(1270,1400)K_1(1270,1400) Decays in QCD Sum Rules

    Get PDF
    We analyze the semileptonic rare decays of BB meson to K1(1270)K_{1} (1270) and K1(1400)K_{1} (1400) axial vector mesons. The BK1(1270,1400)+B\to K_{1} (1270,1400) \ell^+ \ell^- decays are significant flavor changing neutral current decays of the BB meson. These decays are sensitive to the new physics beyond SM, since these processes are forbidden at tree level at SM. These decays occurring at the quark level via bs+b\to s \ell^+ \ell^- transition, also provide new opportunities for calculating the CKM matrix elements VbtV_{bt} and VtsV_{ts}. In this study, the transition form factors of the BK1(1270,1400)+B\to K_{1} (1270,1400) \ell^+ \ell^- decays are calculated using three-point QCD sum rules approach. The resulting form factors are used to estimate the branching fractions of these decays.Comment: 18 pages, 7 figures, version to appear in JP
    corecore