59 research outputs found

    Green concrete production incorporating waste carpet fiber and palm oil fuel ash

    Get PDF
    With the increasing amount of waste generation from various processes, there has been a growing interest in the utilization of waste in producing building materials to achieve potential benefits. This paper highlights the results of an experimental investigation on the performance of concrete incorporating waste carpet fiber (WCF) and palm oil fuel ash (POFA) as partial replacements of ordinary Portland cement (OPC). Six volume fractions varying from 0 to 1.25% of 20-mm-long carpet fiber were used with OPC concrete mixes. Another six mixes were made that replaced OPC with 20% POFA. The specimens were cured in water and tested for fresh and hardened state properties. The combination of WCF and POFA decreased the slump values and increased the VeBe time of fresh concrete. The addition of WCF to either OPC or POFA concrete mixes did not improve the compressive strength or modulus of elasticity. At 91 days, the compressive strength was in the range of 38.1e49.1 MPa. The positive interaction between WCF and POFA, however, leads to high tensile and flexural strengths, thereby increasing the concrete ductility with higher energy absorption and improved crack distribution. The maximum increases in tensile and flexural strengths compared to those of plain concrete were achieved by the addition of 0.5% carpet fiber at the age of 91 days. The ultrasonic pulse velocity (UPV) was examined and was classified as good quality concrete. The study showed that the use of waste carpet fiber and palm oil fuel ash in the production of sustainable green concrete is feasible both technically and environmentally

    Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete

    Get PDF
    Fly ash-based geopolymer (FAGP) and alkali-activated slag (AAS) concrete are produced by mixing alkaline solutions with aluminosilicate materials. As the FAGP and AAS concrete are free of Portland cement, they have a low carbon footprint and consume low energy during the production process. This paper compares the engineering properties of normal strength and high strength FAGP and AAS concrete with OPC concrete. The engineering properties considered in this study included workability, dry density, ultrasonic pulse velocity (UPV), compressive strength, indirect tensile strength, flexural strength, direct tensile strength, and stress-strain behaviour in compression and direct tension. Microstructural observations using scanning electronic microscopy (SEM) are also presented. It was found that the dry density and UPV of FAGP and AAS concrete were lower than those of OPC concrete of similar compressive strength. The tensile strength of FAGP and AAS concrete was comparable to the tensile strength of OPC concrete when the compressive strength of the concrete was about 35 MPa (normal strength concrete). However, the tensile strength of FAGP and AAS concrete was higher than the tensile strength of OPC concrete when the compressive strength of concrete was about 65 MPa (high strength concrete). The modulus of elasticity of FAGP and AAS concrete in compression and direct tension was lower than the modulus of elasticity of OPC concrete of similar compressive strength. The SEM results indicated that the microstructures of FAGP and AAS concrete were more compact and homogeneous than the microstructures of OPC concrete at 7 days, but less compact and homogeneous than the microstructures of OPC concrete at 28 days for the concrete of similar compressive strength

    Properties of eco-friendly cement mortar contained recycled materials from different sources

    Get PDF
    Building materials such as sand, cement, bricks, and steel are usually the main components of the construction sector. All these materials are produced from existing natural resources and they will cause substantial damage to the environment as a result of their continuous depletion. Moreover, during the manufacture of various building materials, especially cement, a high concentration of carbon dioxide is constantly emitted into the atmosphere. Therefore, to reduce this environmental damage as well as to save natural resources, this study was performed to recycle the wastes of some of building materials such as marble, granite and porcelain tiles and clay brick through using them as cement and aggregate replacement materials in cement mortar. Sixteen mixtures were cast for this study. In addition to the control, the mortar mixes were divided into five groups, three mixes in each group. In four of the five groups, cement was replaced in three proportions (5%, 10%, 15% by weight) with each of marble, granite, porcelain and clay brick waste powders (passing through 150-μm sieve). The fifth group included 100% replacing (by weight) of the natural sand with the marble, granite and porcelain tiles wastes (with a comparable gradation). The influence of these wastes on flow rate, compressive strength, flexural strength, bulk density, ultrasonic pulse velocity (UPV) and water absorption tests were observed. Results showed that it is possible to produce an eco-friendly mortar made with 100% recycled marble or porcelain aggregate with a significant improvement in the mechanical and durability properties in comparison with natural aggregate mortar

    Physical mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (southern Sardinia, Italy)

    Get PDF
    The present work aims to study the consolidating and protective chemical treatments of the Pietra Cantone, a Miocenic (lower Tortonian) limestone widely used in important monuments and historical buildings of Cagliari (southern Sardinia, Italy). Similar limestones of the same geological period have also been used in several important monuments of Mediterranean area, i.e., Malta and Gozo Islands, Matera (central Basilicata, Italy), Lecce (southern Puglia, Italy) and Balearic Islands (Spain). The Pietra Cantone limestone shows problems of chemical–physical decay, due to their petrophysical and compositional char- acteristics: high porosity (on average 28–36 vol%), low cemented muddy-carbonate matrix, presence of phyllosil- icates and sindepositional sea salts (\3%). So, after placed in the monument, this stone is easily alterable by weath- ering chemical processes (e.g., carbonate dissolution and sulfation) and also by cyclic mechanisms of crystalliza- tion/solubilization of salts and hydration/dehydration of hygroscopic phases of the clay component. To define the mineralogical-petrographic features (composition, texture) of limestone, the clay and salt crystalline phases, the optical microscope in polarized light and diffraction anal- ysis were used. To define the petrophysical characteristics (i.e., shape and size distribution of porosity, surface area(SBET), matrix microstructures, rock composition) and interactions of chemical treatments with rock, SEM–EDS analysis and N2 porosimetry with BET and BJH methods were used. To evaluate the efficacy of Na/K-silicates, ethyl silicate consolidants and protective nano-molecular silane monomer water repellent, the mechanical strengths (uni- axial compressive strength, point load and flexural resis- tance), water/helium open porosity, water absorption and vapour permeability data determined before and after the chemical treatments of the Pietra Cantone samples from monument were compared
    corecore