4,498 research outputs found
Adaptive HIV-1 evolutionary trajectories are constrained by protein stability
Despite the use of combination antiretroviral drugs for the treatment of HIV-1 infection, the emergence of drug resistance remains
a problem. Resistance may be conferred either by a single mutation or a concerted set of mutations. The involvement
of multiple mutations can arise due to interactions between sites in the amino acid sequence as a consequence of the need to
maintain protein structure. To better understand the nature of such epistatic interactions, we reconstructed the ancestral sequences
of HIV-1’s Pol protein, and traced the evolutionary trajectories leading to mutations associated with drug resistance.
Using contemporary and ancestral sequences we modelled the effects of mutations (i.e. amino acid replacements) on protein
structure to understand the functional effects of residue changes. Although the majority of resistance-associated sequences
tend to destabilise the protein structure, we find there is a general tendency for protein stability to decrease across HIV-1’s
evolutionary history. That a similar pattern is observed in the non-drug resistance lineages indicates that non-resistant mutations,
for example, associated with escape from the immune response, also impacts on protein stability. Maintenance of optimal
protein structure therefore represents a major constraining factor to the evolution of HIV-1
Investigating and learning lessons from early experiences of implementing ePrescribing systems into NHS hospitals:a questionnaire study
Background: ePrescribing systems have significant potential to improve the safety and efficiency of healthcare, but they need to be carefully selected and implemented to maximise benefits. Implementations in English hospitals are in the early stages and there is a lack of standards guiding the procurement, functional specifications, and expected benefits. We sought to provide an updated overview of the current picture in relation to implementation of ePrescribing systems, explore existing strategies, and identify early lessons learned.Methods: a descriptive questionnaire-based study, which included closed and free text questions and involved both quantitative and qualitative analysis of the data generated.Results: we obtained responses from 85 of 108 NHS staff (78.7% response rate). At least 6% (n = 10) of the 168 English NHS Trusts have already implemented ePrescribing systems, 2% (n = 4) have no plans of implementing, and 34% (n = 55) are planning to implement with intended rapid implementation timelines driven by high expectations surrounding improved safety and efficiency of care. The majority are unclear as to which system to choose, but integration with existing systems and sophisticated decision support functionality are important decisive factors. Participants highlighted the need for increased guidance in relation to implementation strategy, system choice and standards, as well as the need for top-level management support to adequately resource the project. Although some early benefits were reported by hospitals that had already implemented, the hoped for benefits relating to improved efficiency and cost-savings remain elusive due to a lack of system maturity.Conclusions: whilst few have begun implementation, there is considerable interest in ePrescribing systems with ambitious timelines amongst those hospitals that are planning implementations. In order to ensure maximum chances of realising benefits, there is a need for increased guidance in relation to implementation strategy, system choice and standards, as well as increased financial resources to fund local activitie
Scaling Separability Criterion: Application To Gaussian States
We introduce examples of three- and four-mode entangled Gaussian mixed states
that are not detected by the scaling and Peres-Horodecki separability criteria.
The presented modification of the scaling criterion resolves this problem. Also
it is shown that the new criterion reproduces the main features of the scaling
pictures for different cases of entangled states, while the previous versions
lead to completely different outcomes. This property of the presented scheme is
evidence of its higher generality.Comment: 7 pages, 4 figure
Cell arrest and cell death in mammalian preimplantation development
The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue.
To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances.
In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development
Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair
The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway
Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor
Current cosmological models indicate that the Milky Way's stellar halo was
assembled from many smaller systems. Based on the apparent absence of the most
metal-poor stars in present-day dwarf galaxies, recent studies claimed that the
true Galactic building blocks must have been vastly different from the
surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in
the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt
on this conclusion. However, verification of the iron-deficiency and
measurements of additional elements, such as the alpha-element Mg, are
mandatory for demonstrating that the same type of stars produced the metals
found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars
be conclusively linked to early stellar halo assembly. Here we report
high-resolution spectroscopic abundances for 11 elements in S1020549,
confirming the iron abundance of less than 1/4000th that of the Sun, and
showing that the overall abundance pattern mirrors that seen in low-metallicity
halo stars, including the alpha-elements. Such chemical similarity indicates
that the systems destroyed to form the halo billions of years ago were not
fundamentally different from the progenitors of present-day dwarfs, and
suggests that the early chemical enrichment of all galaxies may be nearly
identical.Comment: 16 pages, including 2 figures. Accepted for publication in Nature. It
is embargoed for discussion in the press until formal publication in Natur
Differential expression analysis for sequence count data
*Motivation:* High-throughput nucleotide sequencing provides quantitative readouts in assays for RNA expression (RNA-Seq), protein-DNA binding (ChIP-Seq) or cell counting (barcode sequencing). Statistical inference of differential signal in such data requires estimation of their variability throughout the dynamic range. When the number of replicates is small, error modelling is needed to achieve statistical power.

*Results:* We propose an error model that uses the negative binomial distribution, with variance and mean linked by local regression, to model the null distribution of the count data. The method controls type-I error and provides good detection power. 

*Availability:* A free open-source R software package, _DESeq_, is available from the Bioconductor project and from "http://www-huber.embl.de/users/anders/DESeq":http://www-huber.embl.de/users/anders/DESeq
Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study
Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists
The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.
p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate
Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.
BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK
- …
