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Abstract

Background: The causes, modes, biological role and prospective significance of cell death in preimplantation development
in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental
model for the investigation of this fundamental and important issue.

Methods and Findings: To obtain reference data on the temporal and spatial occurrence of cell death in early bovine
embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched
blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for
selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study
documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different
types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived
blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological
features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at
very low abundances.

Conclusions: In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause
immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental
heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests
a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear.
Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the
view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development.
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Introduction

Bovine preimplantation embryos represent an attractive model

for investigating fundamental mechanisms of early mammalian

development [1]. In important aspects, e.g. the timing of

epigenetic reprogramming and embryonic genome activation,

bovine embryos reflect far more closely the situation in human

embryos and in other non-rodent mammals than the mouse model

[2]. The bovine model is valuable for elucidating the mechanisms

of folliculogenesis, oocyte maturation and reproductive ageing in

women. Important similarities to humans include the emergence

of follicular waves, the number of waves during the menstrual/

estrous cycle, selection of a dominant follicle and ovulation of

a single follicle [3].

As in other mammalian species, early embryo death before

implantation is a major determinant of fertility in cows [4]. While

estimates for the fertilization rate in dairy cows after artificial

insemination (AI) range between 80 and 100 percent, recently

published conception rates range around 45 percent [5,6].

In vitro and in vivo, the development of mammalian zygotes to the

blastocyst stage is highly variable and the individual outcome is

uncertain. Cell death during this process has been reported, with

ambiguous interpretations ranging from a pathological phenom-

enon to an indispensable part of normal blastocyst development

[4]. Current knowledge on the occurrence of cell death in early

bovine embryos is largely based on epifluorescence microscopy

studies: namely on the morphological analysis of cell nuclei stained

with DNA-specific dyes such as DAPI and on the detection of

DNA fragmentation using TUNEL (terminal deoxynucleotidyl

transferase-mediated dUTP nick end labeling). Nuclear chromatin

condensation and nuclear fragmentation as well as DNA

fragmentation are classical hallmarks of programmed cell death

(PCD)/apoptosis. Depending on the species, such signs of PCD/

apoptosis have been described already in early cleavage stage
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embryos [7]. Apoptosis as defined by DNA-staining and the

TUNEL assay has been described as a frequent finding in

blastocysts from cattle, pigs, humans and other mammals [7]. In a

study of bovine blastocysts produced in vitro or in vivo, cells with

morphological signs of apoptosis were described in practically all

embryos, predominantly in the inner cell mass (ICM) [8].

Transmission electron microscopy (TEM) of blastocysts seemed

to provide further pieces of evidence for apoptosis especially in the

ICM: cells with highly condensed cytoplasm, nuclei with

condensed and marginalized chromatin, fragmented nuclei as

well as apoptotic bodies containing nuclear fragments and intact

organelles [9]. Hardy et al. [10] reported high apoptotic indices in

morphologically excellent human blastocysts produced in vitro and

proposed that programmed cell death might play an important

role in normal development, e.g., by regulating the cell number.

Studies in cattle and other mammalian species determined higher

apoptotic indices in blastocysts produced in vitro compared to those

developed in vivo [7,11], concluding that insufficient in vitro embryo

production systems might increase apoptosis. Accordingly, the

incidence of apoptosis was proposed as an indicator of the health

status and developmental potential of morulae and blastocysts.

Despite a number of previous studies on this topic, the time

course and nature of cell death during mammalian preimplanta-

tion development is only incompletely resolved. Therefore, we

performed a comprehensive study of early bovine embryogenesis

from fertilization to the hatching blastocyst. In particular, we

addressed the increase in the cell number and the occurrence and

nature of cell death by 3D confocal laser scanning microscopy (3D

CLSM). Further, classical cell death pathways were screened by

quantitative real-time PCR (RT-qPCR) analysis of transcript copy

numbers of ten selected genes which have been shown to play

decisive roles in the execution, initiation and regulation of

apoptosis. The study design is shown in Figure 1.

Materials and Methods

All animal and in vitro procedures were conducted according to

the German Animal Welfare Act (Tierschutzgesetz). Bull semen

was donated by Bayern Genetik GmbH, Grub, Germany. Estrous

cow serum was donated by BFZF GmbH, Oberschleißheim,

Germany. Bovine ovaries were obtained from a slaughterhouse

(Münchner Schlachthof Betriebs GmbH, Munich, Germany).

Both in vitro and in vivo produced embryos were obtained from an

EU approved bovine embryo collection and production centre at

the Chair for Molecular Animal Breeding and Biotechnology of

the LMU Munich (Moorversuchsgut Badersfeld, Obers-

chleißheim, Germany; approval number for the in vivo and in vitro

procedures issued by the District Government of Upper Bavaria,

Munich, Germany: DE ETR 006 EWG).

In vitro production of bovine embryos
The standardized protocol for in vitro production (IVP) of bovine

embryos was described previously [12]. Briefly, ovaries from

slaughtered cows (predominantly Simmental Fleckvieh) were

washed several times with phosphate buffered saline (PBS).

Cumulus-oocyte complexes (COCs) were aspirated from 3–

8 mm follicles and classified using a stereomicroscope. Only

COCs with homogenous cytoplasm and surrounded by at least

three compact layers of cumulus cells (IETS grade 1 and 2 [13])

were chosen for the experiments and washed twice in oocyte

maturation medium (TCM-199 with Earle’s salts, supplemented

with 5% estrous cow serum, 0.025 IU/ml FSH and 0.0125 IU/ml

LH). Groups of 30 40 COCs were matured in vitro (IVM) for 22 h

in 400 ml oocyte maturation medium at 39uC in an atmosphere of

5% CO2 in humidified air. After IVM, COCs were washed in

IVF-TALP (modified Tyrode’s solution supplemented with 6 mg/

ml BSA, 0.022 mg/ml pyruvic acid, and 0.01 mg/ml heparin) and

transferred to 4-well plates that contained 400 ml of IVF-TALP

per well.

For all in vitro fertilization (IVF) experiments frozen semen from

the same Simmental Fleckvieh bull was used. Motile spermatozoa

were selected by swim-up in Sperm-TALP (modified Tyrode’s

solution supplemented with 6 mg/ml BSA and 0.11 mg/ml

pyruvic acid) at 39uC in an atmosphere of 5% CO2 in humidified

air. Approximately 18 h after addition of spermatozoa suspension

(,16106 spermatozoa/ml), the cumulus cells were removed by

gentle vortexing for 3 min. Groups of 30–40 presumptive zygotes

were transferred to 400-ml drops of synthetic oviduct fluid (SOF)

supplemented with 5% (v/v) estrous cow serum, essential and non-

essential amino acids, covered with mineral oil and cultured at

39uC in a humidified atmosphere of 5% CO2, 5% O2 and 90%

N2. In all experiments, the same batch of estrous cow serum was

used. Embryos were harvested for analysis on day 3 (72 h), 4

(96 h), 5 (120 h), 6 (144 h) and 7 (168 h) after sperm addition.

In vivo production of bovine embryos
Ten 15- to 21-month-old Fleckvieh heifers ranging from 330 to

395 kg body weight were used twice at an interval of seven weeks

in two separate experiments to produce embryos in vivo by

superovulation (SO) and artificial insemination (AI). The heifers

were hormonally synchronized by using a progesterone-releasing

intravaginal device (PRID; Ceva, Düsseldorf, Germany) contain-

ing 1.55 g progesterone plus 10 mg estradiol. Starting four days

after PRID insertion, the animals received eight intramuscular

injections of a 1:1 mixture of FSH and LH (Pluset; Laboratorios

Callier, Barcelona, Spain) at 12-h intervals in decreasing doses

(100, 75, 75, 50, 50, 25, 25, 25 IU of each hormone). At the sixth

and seventh injection, the animals additionally received two

Figure 1. Experimental design for the analysis of cell arrest and
cell death in early bovine embryos.
doi:10.1371/journal.pone.0022121.g001
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intramuscular doses of 500 mg of the synthetic prostaglandin F2a

(PGF2a) Cloprostenol (Estrumate; Essex, Munich, Germany).

Seven days after insertion, at the seventh hormone injection, the

PRID was removed. 22, 37 and 46 h after the eighth FSH/LH-

injection, the heifers were artificially inseminated three times with

frozen-thawed semen from the same bull used for the IVF

experiments. At the first AI, the animals received a single

intramuscular dose of 20 mg of the synthetic gonadotropin

releasing hormone (GnRH) Buserelin (Receptal; Intervet, Unters-

chleissheim, Germany). On day 7 (,160 h after the third AI),

embryos were collected non-surgically by flushing each uterine

horn with 250 ml pre-warmed (37uC) PBS.

Stereomicroscopic classification and sorting of bovine
embryos

Immediately after harvesting, the embryos were analyzed under

a stereomicroscope equipped with a temperature-controlled

heated stage at 806 magnification and classified and sorted

according to their developmental stage by an experienced

examiner. Unfertilized and uncleaved oocytes as well as severely

retarded and degenerated embryos were not further analyzed. The

in vivo produced embryos were classified and sorted according to

IETS recommendations [14]. Only grade 1 and 2 blastocysts were

selected for further analyses. The embryos were randomly

allocated to CLSM, TEM and RT-qPCR analyses.

Whole-mount preparation of bovine oocytes and
embryos and confocal laser scanning microscopy (CLSM)

After a brief wash with PBS/PVP the embryos were fixed with

1.3% (w/v) paraformaldehyde in PBS for 60 min, followed by

washing with PBS containing 1 mg/ml polyvinyl pyrrolidone

(PVP). For the morphological analysis of cell nuclei and mitotic

figures and the evaluation of cell death, DNA was stained with

DAPI. In addition, DNA fragmentation was visualized in situ by

terminal transferase-mediated dUTP nick end labeling (TUNEL)

[15] and fluorescein-dUTP using a commercial kit (Roche,

Mannheim, Germany) following manufacturer’s instructions. As

a positive control, the specimen were incubated in 50 IU/ml

DNase I (Sigma, Taufkirchen, Germany) for 30 min at 37uC
before the TUNEL reaction. As a negative control, terminal

transferase was omitted from the reaction mixture. After

completion of the TUNEL assay, the embryos were mounted in

Vectashield antifade solution with DAPI (Axxora, Lörrach,

Germany) on coverslips in such a way that the three-dimensional

structure of the specimen was maintained. A series of embryos was

stained with phalloidin-TRITC to visualize the f-actin cytoskele-

ton. Stacks of optical serial sections (optical thickness 1 mm) were

recorded using a confocal laser scanning microscope (LSM 510

Meta, Zeiss) with a 406 PlanNeofluar (NA 1.3) oil immersion

objective. For excitation of DAPI, fluorescein and TRITC laser

lines of 364 nm, 488 nm and 543 nm were used. The resulting

fluorescence emissions were detected through emission bandpass

filters at 385–470 nm (Hoechst 33342), 505–530 nm (TUNEL)

and 560–615 nm (Phalloidin-TRITC). The standard pixel size

was 3506350 nm; the axial distance between optical sections was

1 mm. At each section plane, the signals of the three fluorochromes

were sequentially recorded and saved as 8-bit grayscale images.

Selected embryos were scanned with a smaller pixel size of

1256125 nm.

The confocal image stacks were analyzed with ImageJ software

(National Institute of Health, Bethesda, MD, USA). For each

embryo we determined a) the total number of cell nuclei and

mitotic figures and b) the number of decaying (dying/dead) cells

(condensed, fragmented and degraded nuclei as well as residues of

mitotic figures) by comparing each optical serial section with the

adjacent section. Specifically, we analyzed the correlation between

cell death as evidenced by DAPI staining and DNA fragmentation

as detected by the TUNEL assay.

Quantitative real-time RT-PCR analysis
Amplification primers (see Table 1) were designed using Primer

Express software version 2.0 (Applied Biosystems, Darmstadt,

Germany) based on public transcript and genomic sequence data

from cattle, mice and humans. For each gene analyzed, a

transcript-specific plasmid DNA standard was generated as

described previously [12]. The plasmid copy number was

calculated from the molecular mass of the plasmid and the insert.

The concentration of the plasmid standard solutions was adjusted

to 106 copies/ml.

RNA isolation and reverse transcription was performed as

described previously [12,16] with minor modifications. Pools of

ten in vitro matured oocytes, of ten in vitro embryos or of five in vivo

embryos were snap-frozen and stored at 280uC. From each pool,

total RNA was isolated by guanidine-thiocyanate/phenol/chloro-

form extraction [17]. To eliminate any contaminating DNA, a

DNase digestion step was performed. The total RNA of each pool

was reverse transcribed into cDNA in a reaction volume of 50 ml.

The reaction mixture contained 0.15 mg/ml random hexamer

primers (Invitrogen), 0.5 mM of each dNTP, 20 mM dithiothreitol

(DTT, Invitrogen) and 2 IU/ml RNase inhibitor (RNaseOUT,

Invitrogen), 16 transcription buffer and 1.2 IU/ml Superscript II

reverse transcriptase (Invitrogen). Reverse transcription was

allowed to proceed for 120 min at 42uC and terminated by

heating to 70uC for 15 min.

To evaluate the efficiency and reproducibility of RNA

extraction and reverse transcription we used pooled samples of

in vitro matured oocytes and rabbit HBA mRNA (GenBank

accession ID X04751) as an external control mRNA. To amplify a

145 bp fragment of rabbit HBA cDNA the following primers were

used: sense - 59 GCA GCC ACG GTG GCG AGT AT 39 and

antisense - 59 CAG GGC TTC GGA CAC CTT C 39. To

generate a qPCR calibration curve for the control mRNA a

plasmid DNA standard was prepared as described above.

All RT-qPCR analyses were performed in triplicate using an

ABI PRISM 7000 sequence detector system (Applied Biosystems,

Darmstadt, Germany) and SYBR Green as fluorescent reporter

for double-stranded DNA. SYBR Green I and ROX reference dye

were purchased from Invitrogen (Karlsruhe, Germany). HotFir-

eTaq polymerase and 106 Taq reaction buffer B, dNTPs and

MgCl2 were obtained from Solis Biodyne (Tartu, Estonia). A 25 ml

qPCR reaction contained 1 ml cDNA sample solution correspond-

ing to 0.1 oocyte or embryo equivalent, a final dilution of

1:500,000 of SYBR Green I stock solution, 0.5 mM ROX

reference dye, 16Taq reaction buffer B, 200 mM of each dNTP,

4 mM MgCl2, 0.01 IU/ml uracil N-glycosylase, 0.3 mM of each

primer and 0.04 IU/ml HotFire Taq polymerase. The cycling

profile was: uracil N-glycosylase activation for 5 min at 50uC;

initial denaturation for 15 min at 95uC; 40 cycles of 15 sec at

95uC and 60 sec at 60uC. Each qPCR run included negative

control reactions without template. The specificity of each PCR

amplification was confirmed by melting point analysis. The real-

time PCR curves were analyzed by using the ABI PRISM 7000

SDS software (version 1.1). The initial template copy number of

each transcript was calculated from a transcript-specific calibration

curve, which was generated by amplifying a series of seven ten-fold

dilutions of the respective plasmid standard (see above).
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Statistical analysis
The SPSS software package, version 16.0 (SPSS, Munich,

Germany) was used for statistical analyses. The statistical

significance of differences between two embryo groups was

assessed by the Mann-Whitney U-test.

Results

Recovery of bovine embryos in vitro and in vivo
In total, we performed 17 independent in vitro fertilization (IVF)

experiments, at least three for each observation time point

(Table 2). Thereby, a total of 4,606 in vitro matured (IVM) oocytes

were fertilized. The cleavage rate evaluated on day 3 was

88%65% (mean value 6 SD), the blastocyst rate was 25%67%

at day 6 and 3765% at day 7. At harvesting, all oocytes/embryos

were analyzed under a stereomicroscope by the same experienced

investigator and classified according to their developmental status.

The data are presented in Table 3. Unfertilized and uncleaved

oocytes and embryos classified as severely retarded, degenerated

or non-viable were not further analyzed.

To validate our in vitro observations regarding their in vivo

relevance, we performed two independent experiments using the

same set of ten donor heifers to produce bovine embryos in vivo by

superovulation (SO) and artificial insemination (AI). A total of 218

oocytes and embryos were harvested by uterine flushing 6–7 days

after AI. The data from the stereomicroscopic analysis and

classification are presented in Table 4. 53 compacted morulae/

early blastocysts (i.e. without a clearly defined ICM) and 78 pre-

hatched blastocysts classified as suitable for embryo transfer were

chosen for further analyses. The average number of embryos

analyzed per donor and superstimulation cycle was 6.561.4.

Cell numbers and occurrence of cell death in bovine
embryos produced in vitro

The cell numbers and the incidence of cell death were determined

by analyzing three-channel image stacks of whole-mount embryos

(Figure 2). Serial transmission light images provided important

structural information on the embryo architecture, on the size and

shape of the embryonic cells, intracellular vacuoles, cytoplasmic

borders and intercellular cavities. A series of embryos was stained

with phalloidin-TRITC to visualize the f-actin cytoskeleton. The cell

numbers were assessed by counting DAPI-stained cell nuclei and

mitotic figures. Condensed and fragmented cell nuclei as well as

chromatin remnants of mitotic figures were defined and counted as

dead. In addition, the TUNEL assay was used to visualize DNA

fragmentation, a frequently used parameter of apoptotic cell death, in

situ. The TUNEL images were analyzed in comparison with the

DAPI images. The result of the analysis of more than 25,000 nuclei is

shown in Table S1. In total, only 33% of the cells with unequivocal

morphological signs of cell death in the DAPI image were TUNEL

positive. Notably, highly condensed as well as fragmented nuclei were

completely negative, weakly or intensely stained. Moreover, we

observed morphologically intact cell nuclei and grossly normal

mitotic figures with weak to moderate TUNEL staining. As a

consequence, we determined the proportion of dead cells only based

on the morphological analysis of the DAPI images.

Table 1. Transcripts and primers for quantitative real-time RT-PCR analysis.

Transcript Primer sequence (59-39) GenBank accession number Fragment size (bp)

18S rRNA sense AAA CGG CTA CCA CAT CCA AGG DQ066896 138

antisense GCG GAA GGA TTT AAA GTG GAC TC

H2AFZ sense CGA AAT GGC TGG CGG TAA G NM_174809 134

antisense GGC TAG TCG TCC TAG ATT TCA GGT

CASP3 sense CTG GAA AAC CCA AAC TTT TCA TTA AY575000 165

antisense GCC AGG AAA AGT AAC CAG GTG C

BIRC4 sense GAA GCA CGG ATC ATT ACA TTT GG AF458770 89

antisense CCT TCA CCT AAA GCA TAA AAT CCA

BAX sense GCA GAG GAT GAT CGC AGC TG U92569 197

antisense CCA ATG TCC AGC CCA TGA TG

BCL2 sense CTT CGC CGA GAT GTC CAG TC AF515848 96

antisense CAC CAC CGT GGC GAA GC

BCL2L1 sense CGT GGA AAG CGT AGA CAA GGA G AB238936 133

antisense GTA GAG TTC CAC AAA AGT GTC

CASP9 sense CGA CGC TTC CAC CTG CTG NM_032996 219

antisense CAC AAT TCT CTC GAC GGA CAC AG

STAT3 sense CTG CAG CAG AAG GTT AGC TAC AAA AJ620655 85

antisense TTC TAA ACA GCT CCA CGA TTC TCT

CASP8 sense GGC CAT GTC AGA CTC TCC AGA AC DQ319070 204

antisense CGA AAG GTC TTA TCC AAA GCG TC

FAS sense GCA ACT CTG CAG CCT CAA ATG U34794 153

antisense CAT CTA TTT TGG CTT CTT CCA TAC C

FASLG sense TCC ACC AGC CAA AGG CAT AC AB035802 126

antisense GAT GGA TCT TGA GTTGAG CTT GC

doi:10.1371/journal.pone.0022121.t001
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Embryo cell numbers and the incidence of dead cells observed

at the different time points and developmental stages are shown in

Figure 3 and Tables S2 and S3.

At day 3, the cell number per embryo varied between 2 and 21,

with a median of 10. Notably, 48% of all day 3 embryos analyzed

and 35% in the developmentally most advanced group of embryos

already contained at least one dead cell (Figure 3). At day 4, the

cell number ranged between 5 and 35 with a median of 16. At day

5, after 120 h, the fastest embryos had reached the compacted

morula stage. Their cell number ranged between 14 and 79 with a

median of 51. The most developed embryos harvested at day 6,

after 144 hours, were non-expanded blastocysts with a fully

formed blastocoel cavity and a clearly visible inner cell mass. The

percentage of embryos with at least one dead cell increased from

48% on day 3 to 92% on day 6. On day 7 (168 h after addition of

sperm) only blastocysts with a clearly visible ICM and blastocoel

were included in the analysis. Notably, all day 7 blastocysts

analyzed contained dead cells. Moreover, we consistently found

noticeable proportions of dying/dead cells in the ICM of the most

advanced embryos, namely hatching blastocysts with a well-

developed and morphologically intact trophoblast (TB). Notably,

CLSM analysis disclosed morphological features of different

modes of ICM cell death in non-expanded, expanded and

hatching/hatched blastocysts: diversely shaped structures of

densely compacted chromatin which were in part compatible

with apoptosis and in part clearly referred to mitotic cell death

(Figure 2C and D).

Non-expanded blastocysts were observed both at day 6 and day

7 (144 and 168 hours after addition of sperm), expanded and

hatching blastocysts only on day 7. The blastocysts of each of the

three stereomicroscopically defined stages were highly heteroge-

neous with respect to (a) the total embryo cell number, (b) the

Table 2. In vitro production of bovine embryos.

Time in culture* Experiments COCs6 Cleavage rate (%) Blastocyst rate (%)

72 h (3 days) 3 514 8067

96 h (4 days) 3 843 9064

120 h (5 days) 4 1,244 9062

144 h (6 days) 3 1,006 8863 2567

168 h (7 days) 4 999 9061 3765

all 17 4,606 8865 3266

*after addition of frozen-thawed sperm;
unumber of potentially fertilized cumulus-oocyte-complexes (COCs) used for in vitro maturation (IVM), fertilization (IVF), and culture (IVC).
doi:10.1371/journal.pone.0022121.t002

Table 3. Stereomicroscopic classification of bovine embryos
produced in vitro.

Time point* Stereomicroscopic classification Number Percent

Day 3 (72 h) UFOsu 109 21

2–7 cells 171 33

8–12 cells 162 32

.12 cells 72 14

all 514 100

Day 4 (96 h) UFOsu 83 10

retarded/degenerated/non-viable 147 17

6–12 cells 222 26

13–20 cells 243 29

.20 cells 148 18

all 843 100

Day 5 (120 h) UFOsu 132 11

retarded/degenerated/non-viable 429 34

6–20 cells 274 22

pre-compacted morula 366 29

compacted morula 47 4

all 1,248 100

Day 6 (144 h) UFOsu 119 12

retarded/degenerated/non-viable 425 42

compacted morula 209 21

early blastocyst 166 17

non-expanded blastocyst 87 9

all 1,006 100

Day 7 (168 h) UFOsu 89 9

retarded/degenerated/non-viable 550 55

non-expanded blastocyst 139 14

expanded blastocyst 154 15

hatching blastocyst 67 7

all 999 100

*after addition of frozen-thawed sperm;
uUFOs: unfertilized or uncleaved oocytes.
doi:10.1371/journal.pone.0022121.t003

Table 4. Stereomicroscopic classification of bovine embryos
produced in vivo.

Time point*
Stereomicroscopic
classification Number Percent

Day 6–7 UFOsu 56 25

(159 h/168 h/183 h) retarded/degenerated/non-
viable

31 15

compacted morula/early
blastocyst

53 25

non-expanded/expanded
blastocyst

78 35

all 218 100

*after three artificial inseminations within 24 hours;
uUFOs: unfertilized/uncleaved oocytes.
doi:10.1371/journal.pone.0022121.t004
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absolute number and proportion of ICM cells and (c) the incidence

of dying/dead cells. The data are shown in Figure 4 and Table S4.

Compared to the non-expanded blastocysts observed on day 6,

non-expanded blastocysts harvested on day 7 were characterized

by a lower proportion of ICM cells (p,0.05) and a higher

proportion of dying/dead cells in the ICM (p,0.001).

The most advanced embryos at each time point most likely

represent undisturbed and normal development. Therefore, the

comparison of non-expanded day 6 blastocysts versus hatching day

7 blastocysts should provide valuable information on the

physiological incidence and potential role of programmed cell

death during normal blastocyst formation. The total cell number

Figure 2. CLSM analysis of bovine IVF embryos. The embryos were fixed and mounted on coverslips in such a way that the three-dimensional
structure was maintained. DNA staining with DAPI is shown in white, f-actin filaments (phalloidin-TRITC) in orange. Scale bars represent 100 mm
(overviews) or 10 mm (details). A–F: Arrest and death of early blastomeres during the first four cleavage cycles. A–D: Maximum intensity z-projections of
optical serial sections of embryos examined at day 4 (A, B) or day 5 (C, D). Many embryos show large early blastomeres that are arrested at interphase
(asterisks) or prophase (arrow heads) or already show clear signs of cell death: DAPI staining reveals variably sized and irregularly shaped clumps of
highly condensed chromatin (large arrows). Notably, frequent findings are remnants of mitotic chromosome structures (small arrows). E, F: Two day 7
embryos that initially survived the death of large early blastomeres. Remnants of early blastomere death can be seen until blastocyst hatching. Panel E
shows an embryo in the form of a single maximum intensity z-projection of the entire confocal image stack (left) and as a sequence of six projections of
20 mm image sub-stacks (right). Panel F presents a z-projection (overlay image and separate channel images) through an entire embryo. G–L: Cell death
in the inner cell mass of bovine IVF blastocysts examined at day 7: In expanding and hatching blastocysts, DAPI staining reveals highly condensed
chromatin structures that are irregularly shaped and variable in size referring to different modes and stages of cell death (arrows). G–J: Four expanding
blastocysts. G is a maximum intensity z-projection of a 20 mm image stack, H, I, J are single optical sections. Dying/dead cells are also shown at higher
magnification. K, K9: Hatched blastocyst. Panel K presents a maximum intensity z-projection of a stack spanning the entire embryo (overlay image and
DAPI alone). K9: Single optical section of the same blastocyst and enlarged view of the inner cell mass: Note a dying/dead cell (arrow head) in the interior
of the inner cell mass as well as the extrusion of a dead cell into the blastocoel (insert: transmission light image).
doi:10.1371/journal.pone.0022121.g002

Cell Arrest and Death in Early Bovine Development

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e22121



of non-expanded day 6 blastocysts ranged between 59 and 197

(median 140), while hatching day 7 blastocysts contained between

119 and 288 cells (median 217; Table S4). The increase in cell

number from non-expanded to hatching blastocysts was primarily

due to the growth of the TB (Figure 4). The median number of

ICM cells in non-expanded day 6 blastocysts was 67 (range 20–

130) and increased to 86 (range 39–106) in hatching day 7

blastocysts. The median proportion of ICM cells in non-expanded

day 6 blastocysts was 47% (range 26–62%), and decreased to 39%

(range 16–46%) in hatching day 7 blastocysts.

In the ICM of hatching day 7 blastocysts we found a

significantly (p,0.001) higher proportion of dying/dead cells

(median 27%, range 12–60%) compared to only 6% (range 0–

35%) in non-expanded day 6 blastocysts (Table S4). Thereby, the

median number of intact ICM cells (total ICM cell number minus

the number of dying/dead ICM cells) remained constant at 64

(Figure 4). Notably, the proportion of dying/dead cells in the TB

and the subzonal space was consistently very low with median

values around 5%.

Occurrence of cell death in embryos derived in vivo
To validate the relevance of our in vitro findings for the in vivo

situation, we compared IVF embryos harvested on day 6 and 7

with embryos derived in vivo from superovulated and artificially

inseminated donor animals (see experimental procedures). To

obtain an adequate sample size for the in vivo embryos we merged

Figure 3. Cell numbers and occurrence of cell death in bovine
embryos in vitro. Embryos were harvested 3 (72 h), 4 (96 h), 5 (120 h),
6 (144 h) and 7 (168 h) days after the addition of the sperm. Initially, the
embryos were classified according to their developmental stage under
a stereomicroscope. DAPI staining and CLSM were used to assess the
number of intact and dying/dead cells (upper two diagrams) in three-
dimensionally preserved specimens (see also Figure 2). The box plots
show median values (white bars), 25th and 75th percentiles (boxes), 5th
and 95th percentiles (whiskers). The data for each developmental stage
were derived from three independent experiments. Note the high
proportion of embryos with at least one dying/dead cell (lower
diagram). The most advanced embryos at each time point (indicated by
m) were used to obtain ‘‘normal’’ age- and stage-specific transcript
copy number profiles in vitro (presented in Figure 5 and Figures S1 and
S2). M = morula; CM = compacted morula; EB = early blastocyst; NEXB =
non-expanded blastocyst; EXB = expanded blastocyst; HB = hatching/
hatched blastocyst; Scale bar = 100 mm.
doi:10.1371/journal.pone.0022121.g003

Figure 4. Cell numbers and occurrence of cell death in
blastocysts produced in vitro. Embryos reaching the non-expanded
blastocyst stage at day 6 and the stage of the hatching/hatched
blastocyst at day 7, most likely represent undisturbed and ‘‘normal’’
development. The box plots show median values (white bars), 25th and
75th percentiles (boxes), 5th and 95th percentiles (whiskers). The data
were obtained from three independent experiments. The increase of
the total cell number was primarily due to the growth of the
trophoblast. Note the striking increase of dying/dead cells in the ICM,
while the median number of intact ICM cells remained constant at 64.
Significant differences are marked by *** (p,0.001) as assessed by the
Mann-Whitney U-test. ICM = inner cell mass; TB = trophoblast; NEXB =
non-expanded blastocysts (day 6); HB = hatching/hatched blastocysts
(day 7).
doi:10.1371/journal.pone.0022121.g004
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the data from non-expanded and expanded blastocysts. Notably,

the blastocysts produced in vivo revealed heterogeneity with respect

to cell number and proportion of dead cells, although the variation

appeared to be smaller than in their in vitro counterparts. The total

cell number of non-hatched blastocysts ranged between 38 and

284 (median 143) in vitro (n = 85) and between 87 and 180 (median

133) in vivo (n = 19). The corresponding numbers of ICM cells were

15 to 139 (median 61) for in vitro and 30 to 81 (median 59) for in

vivo produced embryos. Both in vitro and in vivo blastocysts

contained considerable numbers of dying/dead cells in the ICM,

with median proportions of 16% and 17%, respectively. The

median incidence of dying/dead cells in the TB and/or at the

embryo surface was only 5% in vitro and 3% in vivo.

Cell division arrest und death of early blastomeres
After fertilization, the zygote is divided by a series of mitotic

cleavage divisions into smaller and smaller cells - the blastomeres.

In mammals, the daughter cells of each cleavage division are

practically equal in size. Accordingly, the size of a blastomere is a

function of the number of cell divisions passed and the first

blastomere generations can be easily distinguished by their size.

Developmentally delayed embryos typically/predominantly were

composed of differently sized cells i.e. cells representing different

cleavage cycles and blastomere generations. A high proportion of

in vitro embryos harvested on days 3 to 6 contained at least one

apparently arrested and/or dying/dead large cell of the first four

blastomere generations (Figure 2A–F).

Transcript copy numbers of apoptosis-related genes in
bovine oocytes and embryos

We determined copy numbers of 18S rRNA and histone

H2AFZ mRNA as well as transcript numbers of a set of ten

apoptosis-related genes in bovine oocytes matured in vitro and

embryos produced in vitro and in vivo. The genes selected for the

analysis have been shown to play decisive roles in the initiation,

regulation and execution of apoptosis (Figure 5A). RT-qPCR

analysis was performed on total RNA extracted from pools of 10 in

vitro matured oocytes, 10 in vitro produced embryos, or five in vivo

derived embryos. The analysis included three (in vitro oocytes and

embryos) or two (in vivo embryos) biological replicates, each from

an independent experiment. Further details of the RT-qPCR

analysis are presented in Table S5.

The most advanced embryos at each time point in vitro most

likely represent an undisturbed and ‘‘normal’’ development and

provide ‘‘normal’’ age- and stage-specific transcript copy number

profiles in vitro. For simplification, in the following we restrict the

description to the putatively ‘‘normal’’ transcript profiles. A

synopsis of the transcript copy number profiles obtained for

oocytes and fast developing embryos from day 3 until day 7 in vitro

is given in Figure 5B: The total copy numbers per oocyte or

embryo are visualized by a color-coded heat map. For each

transcript, RT-qPCR analysis revealed a distinct abundance

profile over time. Thereby, the abundance levels varied from

gene to gene by several orders of magnitude. The results are

presented in detail in Figures S1 (reference transcripts) and S2

(apoptosis-related genes).

The transcript copy number profiles for 18S rRNA (Figure S1),

CASP3, XIAP, BAX, BCL2L1 (BCL-XL), CASP9, and STAT3

showed a decline from the oocyte until day 3 or day 4 to

subsequently increase again (Figure S2). The number of mRNA

copies for the histone H2AFZ showed a noticeable peak at day 3

prior to major genome activation followed by a transient decrease

on day 4 (Figure S1). Transcripts for BCL2 were only in the oocyte

unequivocally detected. Transcripts for the so-called extrinsic

initiator caspase-8 were neither detected in oocytes nor in embryos

up to the hatching blastocyst stage. Notably, transcripts for FAS-

Figure 5. Transcript copy number profiles of apoptosis-related genes from the oocyte to the hatching blastocyst in vitro. A: The
proteins encoded by the genes selected for analysis due to their decisive roles in the intrinsic or extrinsic initiation, in the regulation or execution of
apoptosis. Pro-apoptotic proteins are shown in black, anti-apoptotic proteins are shown in blue. STAT3 seems to play a complex ambiguous role. B:
Heatmap representation of transcript copy numbers per oocyte/embryo. Dark blue indicates values below the measurement limit (n. d. = not
detected). Shown are the data (means of three independent experiments) from the most advanced embryos at each time point, which most likely
represent ‘‘normal’’ development. 18S rRNA and H2AZF mRNA served as reference transcripts and are shown in grey. MC = compacted morulae;
NEXB = non-expanded blastocysts; HB = hatching/hatched blastocysts.
doi:10.1371/journal.pone.0022121.g005
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receptor (FAS) were only in hatching blastocysts clearly detected,

transcripts for FAS-ligand (FASLG) only in the oocyte.

Transcript copy numbers of blastocysts produced in vivo
To evaluate our findings in IVF embryos, the study was

extended to in vivo blastocysts generated as described above. At the

time point chosen for uterine flushing, no hatching or hatched

blastocysts were recovered. To account for differences in the cell

number we compared the transcript copy numbers per intact cell

obtained by dividing the mean copy number per embryo by the

mean number of intact cells (Table 5). The copy numbers per

intact cell of 18S rRNA and H2AFZ mRNA were higher in the in

vivo derived blastocysts than in their in vitro counterparts, however

statistical significance was only reached in the case of H2AFZ

(p,0.05). Further, in the in vivo blastocysts the transcript levels for

XIAP (p,0.05), BAX, BCL2L1, and CASP9 (all p,0.01) were

higher, whereas mRNA levels for CASP3 were higher in the in vitro

embryos (p,0.05). Transcripts for BCL2, CASP8 and FASLG

were not detected in both groups of embryos, FAS transcripts were

detected only in the in vivo group at very low abundance. In

general the transcript levels of apoptosis-related genes were very

low in both groups of blastocysts investigated.

Discussion

Our study of early bovine embryogenesis from fertilization to

the hatching blastocyst addressed the occurrence and nature of cell

death by 3D confocal laser scanning microscopy (3D CLSM) and

used RT-qPCR to screen for the presence of transcripts for genes

involved in classical cell death pathways.

Developmental heterogeneity under standardized
conditions in vitro

The developmental heterogeneity of in vitro produced embryos

grown under identical conditions appears to reflect the variable

developmental competence of individual oocytes, although an

influence of stochastic events cannot be excluded. The latter

assumption is supported by the observation of highly stochastic

gene expression profiles in individual blastomeres of preimplan-

tation mouse embryos [18].

Even when performed by experienced investigators, morpho-

logical assessment of individual embryos by standard bright field

stereomicroscopy is rather imprecise and only very roughly reflects

the actual developmental status and cellular composition. Cell

nuclei and mitotic figures cannot be analyzed. In case of

cytoplasmic fragmentation or cytokinesis failures and the forma-

tion of bi- and multinucleated cells, stereomicroscope-based cell

number estimates can differ considerably from CLSM-based

counts of cell nuclei and mitotic figures (see Table S2). We

performed for the first time a comprehensive 3D CLSM study of a

large number of bovine embryos in toto. This analysis revealed

variably and irregularly shaped structures of densely compacted

chromatin representing different stages of various types of cell

demise (Figure 2). The occurrence of different forms of cell death

variably encompassing different forms and degrees of DNA

fragmentation is the most parsimonious explanation that only a

subset of cell death is identified by the TUNEL assay.

Cell cycle arrest and death of early blastomeres
The fate of the embryo depends on the outcome of the first four

cleavage divisions that have a high failure rate. A considerable

proportion of fertilized oocytes fail as a consequence of errors

during this early phase of development. These can lead to

immediate embryo death, the arrest of single blastomeres or to

aberrant subsequent development. Frequent findings are different

types of interphase arrest, different forms of mitotic arrest in pro-,

meta-, ana- and telophase as well as mitotic cell death (Figure 2A–

D). Often, the first three and four cleavage divisions result in less

than eight and sixteen viable cells respectively that continue to

divide. The different types of cell cycle arrest during the first

cleavage cycles are variably linked to various forms of cell

degradation. In this study, nearly 50 percent of the in vitro embryos

analyzed on day 3 already contained at least one cell with

morphological signs of advanced cell death (see above). Impor-

tantly, the actual incidence of early blastomere loss may even be

underestimated: early blastomeres that are permanently arrested

in interphase or mitosis can remain morphologically intact and

seemingly viable until day 7. Irreversibly arrested as well as dying

and dead early blastomeres remain outside/separate from the

developing embryo in the subzonal space and are not engulfed by

the developing embryo. Both arrested early blastomeres and the

remnants of early blastomere death are to be seen up to the

hatching blastocyst stage (Figure 2E and F).

Many embryos that initially survive have to compensate the loss

of one or more early blastomeres and their progeny. Moreover,

irregular mitotic figures according to centrosome and mitotic

spindle aberrations, mitotic cell death and signs of nuclear atypia

refer to mosaic aneuploidy and chromosomal instability. The

decision whether the loss of early blastomeres can be compensated

may depend on the epigenetic commitment of the surviving cells

that continue to divide. At present, it is not clear, when the process

of epigenetic diversification starts in bovine embryos. As an

example, we don’t know whether the four blastomeres generated

by the second cleavage cycle or the eight cells generated by the

third cleavage cycle are epigenetically equivalent or are already

restricted in their developmental potential. An important question

is whether early blastomere loss has long-term effects on the

further development even when the surviving cells have a normal

genotype/epigenotype.

Table 5. Transcript copy numbers in non-expanded/
expanded blastocysts in vitro and in vivo.

Transcript Copy number per intact cell6 p

In vitro In vivo

18S rRNA 2.56106 (1.46106) 8.06106 (3.76106)

H2AFZ 570 (220) 1,400 (620) 0.05

CASP3 23 (12) 11 (4) 0.05

XIAP 30 (10) 46 (13) 0.05

BAX 30 (20) 100 (40) 0.01

BCL2 n.d. n.d.

BCL2L1 36 (20) 130 (40) 0.01

CASP9 4 (1) 13 (5) 0.01

STAT3 135 (50) 140 (80)

CASP8 n.d. n.d.

FAS n.d. 2 (3)

FASLG n.d. n.d.

The table shows means and standard deviations (in brackets) from 3 (in vitro) or
2 (in vivo) biological replicates.
uThe copy number per intact cell was calculated by dividing the mean copy
number per embryo by the mean number of intact cells (n = 128 for in vitro and
n = 117 for in vivo embryos). Significance of differences was tested using the
Mann-Whitney U test.

n. d. = not detected or transcript copy numbers below the measurement limit.
doi:10.1371/journal.pone.0022121.t005
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Developmental programmed cell death in the ICM of
regularly developing hatching blastocysts

In vitro blastocysts of the same age had widely varying cell

numbers of both ICM and TB. The incidence of cell death in the

TB was consistently very low, but highly variable in the ICM. In

vitro development of the non-expanded (day 6) to the hatching

blastocyst (day 7) was characterized by a rapid increase in the TB

cell number. The number of intact ICM cells remained rather

constant, while the proportion of dying/dead ICM cells increased.

Remarkably, the highest incidence of ICM cell death was observed

in seemingly well developed hatching blastocysts. Thus, the

development from the non-expanded to the hatching blastocyst

seems to coincide with the onset of a physiological wave of

controlled ICM cell death due to a temporary limitation of the

ICM cell number and/or developmental cell selection/sorting

processes. Intriguingly, there is rather vague evidence that ICM

cell death is mainly due to classical caspase-mediated apoptosis.

There are no quantitative microscopic studies that document

massive activation of effector caspases in the majority of dying/

dead ICM cells. Our CLSM analysis disclosed morphological

features of different modes of cell death: diversely shaped

structures of densely compacted chromatin that in part are

compatible with apoptosis and in part clearly refer to mitotic cell

death (Figure 2G–K). Concordant with the coincident occurrence

of different cell death modes, the TUNEL assay revealed DNA

fragmentation only in a subset of ICM cells with advanced features

of cell death. Transmission electron microscopy was not helpful to

unravel the enigma of ICM cell death: As others [9,19], we

detected some morphological features typical of apoptosis, such as

nuclear condensation and fragmentation, as well as structures that

can be interpreted as engulfment of cell corpses by neighboring

cells (data not shown). A quantitative evaluation of cell death by

TEM is practically impossible. Moreover, since only a limited

number of embryos and a small number of cells can be analyzed

by TEM, there is a serious risk of false interpretation or over-

interpretation of artifactual, rare and non-representative findings.

Morphological evidence for different types of cell death is not

necessarily contradictory to the occurrence of developmentally

programmed cell death: Recent research has conclusively shown

that there is a broad spectrum of different cell death subroutines

that causes a serious nomenclature problem. The textbook

simplification ‘programmed cell death = apoptosis = caspase acti-

vation’ has become more and more questionable (for reviews see

[20,21]).

Cell death in embryos derived in vivo
To what extent is ICM cell death indicative for altered

development in vitro? Several studies of bovine blastocysts reported

higher cell death indices in vitro than in vivo [8,11,22]. However, the

published data on the incidence of cell death in bovine embryos

are difficult to compare due to different detection methods and

quantification criteria. In our study, CLSM analysis of blastocysts

produced in vivo revealed practically the same degree of

developmental heterogeneity regarding the cell numbers and the

occurrence of cell death as observed in embryos produced in vitro.

One has to consider that all embryos in a culture well in vitro have

practically the same age that is quite exactly defined by the time of

sperm addition. In contrast, embryos produced in vivo represent a

broader time window due to asynchronous ovulation and

fertilization. Failures of the first cleavage divisions leading to early

blastomere arrest and death are a notably frequent finding also in

in vivo embryos. Further, in vivo produced blastocysts showed

practically the same high incidence of ICM cell death as their in

vitro counterparts supporting the concept of developmentally

programmed forms of ICM cell death. We have to admit that at

present there is no empirical evidence that an apoptosis index

might be a suitable parameter to predict the developmental

potential of blastocysts. Future studies need to elucidate the modes

and mechanisms of ICM death to understand the fundamental

principles of how ICM cells start to build up a new organism.

The analysis of transcript abundances in mammalian
oocytes and early embryos

In parallel to the morphological analyses, we analyzed the

mRNA abundance of selected apoptosis-associated genes in bovine

oocytes and pre-implantation embryos by quantitative RT-PCR.

The analysis of transcript levels is a first step to elucidate which

components of the apoptosis machinery may be present and play a

role in early embryo development. In small pools of oocytes and

embryos, we simultaneously studied a set of genes, which are

known be critically involved in the execution and regulation of

apoptosis as well as in the induction of apoptosis by intrinsic and

extrinsic signaling pathways. Instead of relative transcript

abundances, we determined transcript copy numbers in relation

to embryonic age and developmental stage. Moreover, we

calculated transcript copy numbers per cell by dividing the copy

numbers per embryo through the average cell numbers deter-

mined in parallel for the respective embryo age and developmental

stage.

Mammalian oocytes contain large stockpiles of translationally

inactive mRNAs with short poly(A) tails. After fertilization, such

maternal mRNAs are activated for translation by cytoplasmic

polyadenylation to drive the first cleavage divisions. Regulation of

the poly(A) tail length appears to be the major mechanism for the

regulation of mRNA translation after fertilization (for review see

[23,24]). In the following, the maternal transcripts are gradually

degraded in parallel to the gradual activation of the embryonic

genome and the increase in embryonic transcripts [23,25].

Reverse transcription using random-hexamer (RH)-primers in-

cludes all maternal and embryonic transcripts irrespective of the

presence of a poly(A) tail.

A major challenge of transcript analyses in mammalian oocytes

and preimplantation embryos is the relatively low RNA content.

Estimates for bovine oocytes and blastocysts based on Northern

blot analyses are in the range of 1–2 ng and 5 ng, respectively

[26]. Accordingly, particularly critical issues are the efficiency and

reproducibility of RNA extraction and reverse transcription (for

review see [27]). Since early embryogenesis from fertilization to

the blastocyst stage is characterized by extremely dynamic cellular

and molecular changes, the choice of appropriate reference genes

for this developmental window is a problem difficult to solve (for

discussion see [28,29,30]). Absolute quantification of transcript

abundances avoids the problem of adequate reference genes for

normalization.

The mere detection of transcripts and the observation of

changes in relative transcript levels can only provide rather limited

evidence for a functional relevance. Nevertheless, the determina-

tion of absolute transcript abundances is essential to define the

normal range of specific transcript levels and to gain insights into

the regulation of the expression of specific genes, e.g., aided by

computer simulations.

Transcript copy number profiles of apoptosis-related
genes in bovine oocytes and early embryos derived
in vitro

This study provides for the first time copy numbers for 18S

rRNA and H2AFZ mRNA during early bovine development from
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the oocyte to the hatching blastocyst. rRNA synthesis has been

shown to start during the third cleavage cycle of bovine

development [31], while the ultrastructure and molecular

composition of functional nucleoli has been reported to be

established during the fourth cell cycle [32]. Accordingly, we

found a steep increase in 18S rRNA on day 5 at the morula stage.

H2AFZ is a highly conserved variant of histone H2A. H2AFZ

seems to play a complex role in epigenetic/chromatin-based gene

regulation, but its precise function is not yet well defined [33]. In

matured oocytes, the transcript copy number for H2AFZ was very

low. Notably, there was an explosive peak of the copy number per

embryo on day 3 after fertilization – preceding major genome

activation.

CASP3 is the major effector caspase of the apoptosis system (for

review see [34]) and appears to have multiple functions in cell

survival, proliferation, differentiation and inflammation (for review

see [35]). Interestingly, a critical role for CASP3 in embryonic

stem cell differentiation has been proposed [36]. In mice,

homozygous knockout of Casp3 results in fetal and perinatal death

(for reviews see [37,38]), however the role of CASP3 in early

development is not yet clear. Studies in cattle and other

mammalian species found CASP3 transcripts in oocytes and

embryos up to the hatching blastocyst [39,40,41]. In our study, we

also consistently found CASP3 transcripts from the oocyte to the

blastocyst stage, but at very low levels. This raises the question,

whether a sufficient number of pro-caspase-3 molecules required

for the execution of apoptosis may be present in early bovine

embryos.

XIAP (BIRC4) protein is a direct inhibitor of caspases 3, 7 and 9

and a potent suppressor of apoptosis (for review see [42]). Notably,

we found high BIRC4 transcript copy numbers in oocytes, while

only one tenth of the oocyte transcript level was detected in day 3

embryos. During further development to the hatching blastocyst,

the transcript copy numbers per embryo for XIAP and CASP3

were in the same range. Notably, important not apoptosis-related

functions have been proposed for BIRC4 and the other members

of the IAP family e.g. in cell cycle regulation, protein degradation

and caspase-independent signal transduction cascades (for review

see [43]).

BAX protein is regarded as a key initiator of apoptosis by

triggering the release of cytochrome c from mitochondria (for

review see [44,45]). For BAX and BCL2L1, an anti-apoptotic

member of the BCL2 protein family, transcripts were consistently

found in both oocytes and all embryonic stages analyzed. Thereby,

the transcript copy numbers for both genes were in the same

range. In contrast, transcripts for the (anti-apoptotic) protein

BCL2 were only in matured oocytes at very low levels consistently

detected.

Similar as for CASP3 mRNA (see above), very low transcript

copy numbers were found for CASP9, the central initiator caspase

of the intrinsic apoptosis induction pathway and activator of

CASP3 (for reviews see [37,38]). In non-expanded day 6

blastocysts only few copies per cell were measured, casting doubts

on intrinsic activation of caspase-mediated cell death.

The absence or very low transcript copy number (under the

measurement limit of 200 copies per oocyte or embryo) for FAS-

receptor and FAS-ligand before blastocyst formation argue against

a relevant role of the FAS/FASLG-extrinsic apoptosis induction

pathway at this early stage of development.

Transcripts for pro-caspase-8 were neither detected in oocytes

nor in embryos up to the hatching blastocyst stage. Since caspase-8

is involved in all known death receptor pathways (for review see

[46]), it is unlikely that other death receptor signaling pathways

induce apoptosis in early bovine embryos.

Transcript abundances in blastocysts derived in vivo
As a first step to evaluate our findings on transcript copy

numbers in vitro, we analyzed in vivo produced embryos in the same

way (see above). To take into account differences in the cell

number, we compared transcript copy numbers per cell

additionally normalized against the two reference genes. Overall,

the transcript copy numbers determined in the in vivo embryos

were practically in the same range as those measured in the in vitro

counterparts. Numerous studies have addressed differences in

(relative) transcript abundances between in vitro and in vivo

produced bovine embryos and found statistically significant

differences for a broad range of genes (for reviews see [47,48]).

The interpretation of such differences in transcript abundances has

to be very cautious. The comparison of gene expression pattern

between in vitro and in vivo development is a difficult task: a major

problem is to compare embryos of the same age and develop-

mental stage (see above). Moreover, even highly statistical

differences in transcript abundances not necessarily coincide with

functionally relevant differences at the protein level. Finally,

differences in transcript abundances between embryos grown

under different conditions may simply reflect successful adaptation

to different environmental conditions without long term effects for

development.

Conclusions and perspectives
After fertilization, the formation of a regular diploid genome

and the maintenance of the genome integrity over the first

cleavage divisions from the chromosome level down to the

nucleotide level appear to be the primary critical task in

mammalian embryogenesis [49]. In cattle, the first and the next

three cleavage divisions have a high failure rate and are the

main source of developmental heterogeneity in vitro and in vivo.

Cell division errors at this early phase frequently cause

immediate embryo death, irreversible cell cycle arrest and

death of single blastomeres and/or aberrant subsequent

development. During the development of the non-expanded to

the hatching blastocyst, there seems to be a physiological wave

of controlled ICM cell death keeping the ICM cell number

constant for a while. Importantly, the dying/dead cells in the

ICM only in part show morphological features compatible with

apoptosis. The morphological findings as well as the absence or

very low abundance of transcripts for CASP3, CASP9, CASP8

and FAS/FASLG are in conflict with the view that classical

caspase-mediated apoptosis is the major cause of cell death in

early bovine development.

Future studies need to disclose in detail the main failures of the

first four cleavage cycles: the mechanisms underlying centrosome

and spindle aberrations, the activity of cell surveillance/DNA

repair systems and the role of cell cycle checkpoints. The

investigation of the most frequent aberrations of the first cleavage

cycles can guide us to understand the functional, structural and

molecular basis of the most relevant oocyte deficiencies. At the

blastocyst stage, the nature and causes of ICM cell death as well as

the prognostic significance of the ICM cell number and ICM cell

death need to be addressed.

Supporting Information

Figure S1 Copy number profiles of 18S rRNA and
H2AFZ mRNA from the oocyte to the hatching blastocyst
in vitro. Shown are the data (means and standard deviations of

three independent experiments) from in vitro matured oocytes and

the most advanced embryos at each time point which most likely

represent ‘‘normal’’ development in vitro. Transcript copy numbers
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per oocyte/embryo are presented on the left, and the correspond-

ing values per cell on the right. Note that the y-axis scales vary.

(PDF)

Figure S2 Transcript copy number profiles of apoptosis-
related genes from the oocyte to the hatching blastocyst in
vitro. Shown are the data (means and standard deviations of three

independent experiments) from in vitro matured oocytes and the most

advanced embryos at each time point which most likely represent

‘‘normal’’ development in vitro. Transcript copy numbers per oocyte/

embryo are presented on the left, and the corresponding values per cell

on the right. Note the different scaling of the y-axis. CM = compacted

morula; NEXB = non-expanded blastocyst; HB = hatching blastocyst.

(PDF)

Table S1 Quantitative analysis of cell death in bovine embryos

produced in vitro: comparison of DAPI staining and TUNEL.

(PDF)

Table S2 Embryo cell numbers and the incidence of dying/dead

cells in vitro.

(PDF)

Table S3 Proportion of in vitro produced embryos with dying/

dead cells.

(PDF)

Table S4 Cell numbers and the incidence of dying/dead cells in

blastocysts produced in vitro.

(PDF)

Table S5 Calibration curves/CT-values for quantitative Real-

Time-PCR.

(PDF)
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