569 research outputs found

    US IOOS coastal and ocean modeling testbed: Inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico

    Get PDF
    A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking study. Three unstructured coastal circulation models (ADCIRC, FVCOM, and SELFE) validated with similar skill on a new common Gulf scale mesh (ULLR) with identical frictional parameterization and forcing for the tidal validation and hurricane hindcasts. Coupled circulation and wave models, SWAN+ADCIRC and WWMII+SELFE, along with FVCOM loosely coupled with SWAN, also validated with similar skill. NOAA\u27s official operational forecast storm surge model (SLOSH) was implemented on local and Gulf scale meshes with the same wind stress and pressure forcing used by the unstructured models for hindcasts of Ike and Rita. SLOSH\u27s local meshes failed to capture regional processes such as Ike\u27s forerunner and the results from the Gulf scale mesh further suggest shortcomings may be due to a combination of poor mesh resolution, missing internal physics such as tides and nonlinear advection, and SLOSH\u27s internal frictional parameterization. In addition, these models were benchmarked to assess and compare execution speed and scalability for a prototypical operational simulation. It was apparent that a higher number of computational cores are needed for the unstructured models to meet similar operational implementation requirements to SLOSH, and that some of them could benefit from improved parallelization and faster execution speed

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate μn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics

    Artificial immune systems

    Get PDF
    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self or nonself substances. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years

    Repair of an inguinoscrotal hernia containing the urinary bladder: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cases of patients with inguinoscrotal hernia containing the urinary bladder are very rare. These patients usually present with frequent episodes of urinary tract infection, difficulty in walking, pollakisuria and difficulty in initiating micturition because of incarceration of the urinary bladder into the scrotum.</p> <p>Case presentation</p> <p>We describe the case of an 80-year-old Caucasian man with an incarcerated urinary bladder into the scrotum who underwent surgical repair with mesh.</p> <p>Conclusions</p> <p>Diagnosis of such cases often requires not only clinical examination but also specialized radiological examinations to show the ectopic position of the urinary bladder. Surgical repair in these patients is a real challenge for surgeons.</p

    New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary

    Get PDF
    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous

    Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions

    Get PDF
    Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO) scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future

    Modeling the competition between lung metastases and the immune system using agents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Triplex cell vaccine is a cancer cellular vaccine that can prevent almost completely the mammary tumor onset in HER-2/neu transgenic mice. In a translational perspective, the activity of the Triplex vaccine was also investigated against lung metastases showing that the vaccine is an effective treatment also for the cure of metastases. A future human application of the Triplex vaccine should take into account several aspects of biological behavior of the involved entities to improve the efficacy of therapeutic treatment and to try to predict, for example, the outcomes of longer experiments in order to move faster towards clinical phase I trials. To help to address this problem, MetastaSim, a hybrid Agent Based - ODE model for the simulation of the vaccine-elicited immune system response against lung metastases in mice is presented. The model is used as in silico wet-lab. As a first application MetastaSim is used to find protocols capable of maximizing the total number of prevented metastases, minimizing the number of vaccine administrations.</p> <p>Results</p> <p>The model shows that it is possible to obtain "in silico" a 45% reduction in the number of vaccinations. The analysis of the results further suggests that any optimal protocol for preventing lung metastases formation should be composed by an initial massive vaccine dosage followed by few vaccine recalls.</p> <p>Conclusions</p> <p>Such a reduction may represent an important result from the point of view of translational medicine to humans, since a downsizing of the number of vaccinations is usually advisable in order to minimize undesirable effects. The suggested vaccination strategy also represents a notable outcome. Even if this strategy is commonly used for many infectious diseases such as tetanus and hepatitis-B, it can be in fact considered as a relevant result in the field of cancer-vaccines immunotherapy. These results can be then used and verified in future "in vivo" experiments, and their outcome can be used to further improve and refine the model.</p

    Operating organic light-emitting diodes imaged by super-resolution spectroscopy

    Get PDF
    Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packed chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. This points the way towards real-time analysis of materials design principles in devices as they actually operateope

    Comparison of Rx-defined morbidity groups and diagnosis- based risk adjusters for predicting healthcare costs in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medication claims are commonly used to calculate the risk adjustment for measuring healthcare cost. The Rx-defined Morbidity Groups (Rx-MG) which combine the use of medication to indicate morbidity have been incorporated into the Adjusted Clinical Groups (ACG) Case Mix System, developed by the Johns Hopkins University. This study aims to verify that the Rx-MG can be used for adjusting risk and for explaining the variations in the healthcare cost in Taiwan.</p> <p>Methods</p> <p>The Longitudinal Health Insurance Database 2005 (LHID2005) was used in this study. The year 2006 was chosen as the baseline to predict healthcare cost (medication and total cost) in 2007. The final sample size amounted to 793 239 (81%) enrolees, and excluded any cases with discontinued enrolment. Two different kinds of models were built to predict cost: the concurrent model and the prospective model. The predictors used in the predictive models included age, gender, Aggregated Diagnosis Groups (ADG, diagnosis- defined morbidity groups), and Rx-defined Morbidity Groups. Multivariate OLS regression was used in the cost prediction modelling.</p> <p>Results</p> <p>The concurrent model adjusted for Rx-defined Morbidity Groups for total cost, and controlled for age and gender had a better predictive R-square = 0.618, compared to the model adjusted for ADGs (R<sup>2 </sup>= 0.411). The model combined with Rx-MGs and ADGs performed the best for concurrently predicting total cost (R<sup>2 </sup>= 0.650). For prospectively predicting total cost, the model combined Rx-MGs and ADGs (R<sup>2 </sup>= 0.382) performed better than the models adjusted by Rx-MGs (R<sup>2 </sup>= 0.360) or ADGs (R<sup>2 </sup>= 0.252) only. Similarly, the concurrent model adjusted for Rx-MGs predicting pharmacy cost had a better performance (R-square = 0.615), than the model adjusted for ADGs (R<sup>2 </sup>= 0.431). The model combined with Rx-MGs and ADGs performed the best in concurrently as well as prospectively predicting pharmacy cost (R<sup>2 </sup>= 0.638 and 0.505, respectively). The prospective models showed a remarkable improvement when adjusted by prior cost.</p> <p>Conclusions</p> <p>The medication-based Rx-Defined Morbidity Groups was useful in predicting pharmacy cost as well as total cost in Taiwan. Combining the information on medication and diagnosis as adjusters could arguably be the best method for explaining variations in healthcare cost.</p
    corecore