A birth-death process is a continuous-time Markov chain that counts the
number of particles in a system over time. In the general process with n
current particles, a new particle is born with instantaneous rate λn
and a particle dies with instantaneous rate μn. Currently no robust and
efficient method exists to evaluate the finite-time transition probabilities in
a general birth-death process with arbitrary birth and death rates. In this
paper, we first revisit the theory of continued fractions to obtain expressions
for the Laplace transforms of these transition probabilities and make explicit
an important derivation connecting transition probabilities and continued
fractions. We then develop an efficient algorithm for computing these
probabilities that analyzes the error associated with approximations in the
method. We demonstrate that this error-controlled method agrees with known
solutions and outperforms previous approaches to computing these probabilities.
Finally, we apply our novel method to several important problems in ecology,
evolution, and genetics