28 research outputs found
Applicability of in vivo staging of regional amyloid burden in a cognitively normal cohort with subjective memory complaints: the INSIGHT-preAD study.
BACKGROUND:Current methods of amyloid PET interpretation based on the binary classification of global amyloid signal fail to identify early phases of amyloid deposition. A recent analysis of 18F-florbetapir PET data from the Alzheimer's disease Neuroimaging Initiative cohort suggested a hierarchical four-stage model of regional amyloid deposition that resembles neuropathologic estimates and can be used to stage an individual's amyloid burden in vivo. Here, we evaluated the validity of this in vivo amyloid staging model in an independent cohort of older people with subjective memory complaints (SMC). We further examined its potential association with subtle cognitive impairments in this population at elevated risk for Alzheimer's disease (AD). METHODS:The monocentric INSIGHT-preAD cohort includes 318 cognitively intact older individuals with SMC. All individuals underwent 18F-florbetapir PET scanning and extensive neuropsychological testing. We projected the regional amyloid uptake signal into the previously proposed hierarchical staging model of in vivo amyloid progression. We determined the adherence to this model across all cases and tested the association between increasing in vivo amyloid stage and cognitive performance using ANCOVA models. RESULTS:In total, 156 participants (49%) showed evidence of regional amyloid deposition, and all but 2 of these (99%) adhered to the hierarchical regional pattern implied by the in vivo amyloid progression model. According to a conventional binary classification based on global signal (SUVRCereb = 1.10), individuals in stages III and IV were classified as amyloid-positive (except one in stage III), but 99% of individuals in stage I and even 28% of individuals in stage II were classified as amyloid-negative. Neither in vivo amyloid stage nor conventional binary amyloid status was significantly associated with cognitive performance in this preclinical cohort. CONCLUSIONS:The proposed hierarchical staging scheme of PET-evidenced amyloid deposition generalizes well to data from an independent cohort of older people at elevated risk for AD. Future studies will determine the prognostic value of the staging approach for predicting longitudinal cognitive decline in older individuals at increased risk for AD
β-Secretase1 biological markers for Alzheimer's disease: state-of-art of validation and qualification
β-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-β pathway in Alzheimer’s disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.
In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.
The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.
BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm
beta-Secretase1 biological markers for Alzheimer's disease : state-of-art of validation and qualification
beta -Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-beta pathway in Alzheimer's disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm
Brain A beta load association and sexual dimorphism of plasma BACE1 concentrations in cognitively normal individuals at risk for AD
Introduction: Successful development of effective beta-site amyloid precursor protein cleaving enzyme 1 (BACE1)-targeted therapies for early stages of Alzheimer's disease requires biomarker-guided intervention strategies. Methods: We investigated whether key biological factors such as sex, apolipoprotein E (APOE epsilon 4) allele, and age affect longitudinal plasma BACE1 concentrations in a large monocenter cohort of individuals at risk for Alzheimer's disease. We explored the relationship between plasma BACE1 concentrations and levels of brain amyloid-beta (A beta) deposition, using positron emission tomography global standard uptake value ratios. Results: Baseline and longitudinal mean concentrations of plasma BACE1 were significantly higher in women than men. We also found a positive significant impact of plasma BACE1 on baseline A beta-positron emission tomography global standard uptake value ratios. Discussion: Our results suggest a sexual dimorphism in BACE1-related upstream mechanisms of brain A beta production and deposition. We argue that plasma BACE1 should be considered in further biomarker validation and qualification studies as well as in BACE1 clinical trials. (C) 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association
Association of brain network dynamics with plasma biomarkers in subjective memory complainers
Using a single integrated analysis, we examined the relationship between brain networks and molecular pathways in a cohort of elderly individuals at risk for Alzheimer's disease. In 205 subjective memory complainers (124 females, mean age: 75.7 ± 3.4), individual functional connectome was computed for a total of 3081 functional connections (set A) and 6 core plasma biomarkers of Alzheimer's disease (set B) were assessed. Partial least squares correlation analysis identified one dimension of population covariation between the 2 sets (p < 0.006), which we named bioneural mode. Five core plasma biomarkers and 190 functional connections presented bootstrap ratios greater than the critical value |1.96|. T-tau protein showed a trend toward significance (bootstrap resampling = 1.64). The salience, the language, the visuospatial, and the default mode networks were the strongest significant networks. We detected a strong association between network dynamics and core pathophysiological blood biomarkers. Innovative composite biomarkers, such as the bioneural mode, are promising to provide outcomes and better inform drug development and clinical practice for neurodegenerative diseases
Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints : a 3-year follow-up study
Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer's disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE epsilon 4 allele, comorbidities, brain amyloid-beta (A beta) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE epsilon 4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of A beta deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood
Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study
BACKGROUND: Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer's disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE ε4 allele, comorbidities, brain amyloid-β (Aβ) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. METHODS: Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). RESULTS: We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE ε4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of Aβ deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. CONCLUSION: We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood
MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints.
There is substantial experimental evidence for dysregulation of several microRNA (miRNA) expression levels in Alzheimer's disease (AD). MiRNAs modulate critical brain intracellular signaling pathways and are associated with AD core pathophysiological mechanisms. First, we conducted a real-time quantitative PCR-based pilot study to identify a set of brain-enriched miRNAs in a monocentric cohort of cognitively normal individuals with subjective memory complaints, a condition associated with increased risk of AD. Second, we investigated the impact of age, sex, and the Apolipoprotein E ε4 (APOE ε4) allele, on the identified miRNA plasma concentrations. In addition, we explored the cross-sectional and longitudinal association of the miRNAs plasma concentrations with regional brain metabolic uptake using amyloid-β (Aβ)-positron emission tomography (Aβ-PET) and 18F-fluorodeoxyglucose-PET (18F-FDG-PET). We identified a set of six brain-enriched miRNAs-miRNA-125b, miRNA-146a, miRNA-15b, miRNA-148a, miRNA-26b, and miRNA-100. Age, sex, and APOE ε4 allele were not associated with individual miRNA abundance. MiRNA-15b concentrations were significantly lower in the Aβ-PET-positive compared to Aβ-PET-negative individuals. Furthermore, we found a positive effect of the miRNA-15b*time interaction on regional metabolic 18F-FDG-PET uptake in the left hippocampus. Plasma miRNA-125b concentrations, as well as the miRNA-125b*time interaction (over a 2-year follow-up), were negatively associated with regional Aβ-PET standard uptake value ratio in the right anterior cingulate cortex. At baseline, we found a significantly negative association between plasma miRNA-125b concentrations and 18F-FDG-PET uptake in specific brain regions. In an asymptomatic at-risk population for AD, we show significant associations between plasma concentrations of miRNA-125b and miRNA-15b with core neuroimaging biomarkers of AD pathophysiology. Our results, coupled with existing experimental evidence, suggest a potential protective anti-Aβ effect of miRNA-15b and a biological link between miRNA-125b and Aβ-independent neurotoxic pathways
Recommended from our members
Blood-based systems biology biomarkers for next-generation clinical trials in Alzheimer's disease
Alzheimer’s disease (AD)—a complex disease showing multiple pathomechanistic alterations—is triggered by nonlinear dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential drug resistance mechanisms. In this scenario, systems biology holds promise to accelerate validation and qualification for clinical trial contexts of use—including proof-of-mechanism, patient selection, assessment of treatment efficacy and safety rates, and prognostic evaluation. Albeit in their infancy, systems biology-based approaches are poised to identify relevant AD “signatures” through multifactorial and interindividual variability, allowing us to decipher disease pathophysiology and etiology. Hopefully, innovative biomarker-drug codevelopment strategies will be the road ahead towards effective disease-modifying drugs.Includes MRC fundin