236 research outputs found

    Plasmodium vivax relapse rates following plasmodium falciparum malaria reflect previous transmission intensity

    Get PDF
    From 2003 through 2009, 687 of 2885 patients (23.8%) treated for Plasmodium falciparum malaria in clinical studies in Myanmar or on the Thailand-Myanmar border had recurrent Plasmodium vivax malaria within 63 days, compared with 18 of 429 patients (4.2%) from 2010 onward (risk ratio [RR], 0.176; 95% confidence interval, .112–.278; P < .0001). Corresponding data from 42 days of follow-up revealed that 820 of 3883 patients (21.1%) had recurrent P. vivax malaria before 2010, compared with 22 of 886 (2.5%) from 2010 onward (RR, 0.117; 95% CI, .077–.177; P < .0001). This 6-fold reduction suggests a recent decline in P. vivax transmission intensity and, thus, a substantial reduction in the proportion of individuals harboring hypnozoites

    PCR Targeting Plasmodium Mitochondrial Genome of DNA Extracted from Dried Blood on Filter Paper Compared to Whole Blood.

    Get PDF
    Monitoring mortality and morbidity attributable to malaria is paramount to achieve elimination of malaria. Diagnosis of malaria is challenging and PCR is a reliable method for identifying malaria with high sensitivity. However, blood specimen collection and transport can be challenging and obtaining dried blood spots (DBS) on filter paper by finger-prick may have advantages over collecting whole blood by venepuncture. DBS and whole blood were collected from febrile children admitted at the general paediatric wards at a referral hospital in Dar es Salaam, Tanzania. DNA extracted from whole blood and from DBS was tested with a genus-specific PCR targeting the mitochondrial Plasmodium genome. Positive samples by PCR of DNA from whole blood were tested with species-specific PCR targeting the 18S rRNA locus, or sequencing if species-specific PCR was negative. Rapid diagnostic test (RDT) and thin blood smear microscopy was carried out on all patients where remnant whole blood and a blood slide, respectively, were available. Positivity of PCR was 24.5 (78/319) and 11.2% (52/442) by whole blood and DBS, respectively. All samples positive on DBS were also positive on Plasmodium falciparum species-specific PCR. All RDT positive cases were also positive by DBS PCR. All but three cases with positive blood slides were also positive by DBS. In this study, PCR for malaria mitochondrial DNA extracted from whole blood was more sensitive than from DBS. However, DBS are a practical alternative to whole blood and detected approximately the same number of cases as RDTs and, therefore, remain relevant for research purposes

    A new tool for the chemical genetic investigation of the Plasmodium falciparum Pfnek-2 NIMA-related kinase

    Get PDF
    Background: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. Results: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. Conclusions: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2. © 2016 The Author(s)

    Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Get PDF
    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase

    Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria.

    Get PDF
    BACKGROUND: The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca(2+)-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. METHODS: Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped for pfmdr1, pfatp6 and pfk13 loci by DNA sequencing and assessing pfmdr1 copy number variation (CNV) by real-time PCR. RESULTS: Pfmdr1-N86Y mutation was detected in 48, 10 and 10% in Lambaréné, Kumasi and Kisumu, respectively. At codon 184, the prevalence of the mutation was 73% in Lambaréné, 63% in Kumasi and 49% Kisumu. The S1034C and N1042D variants were absent at all three sites, while the frequency of the D1246Y mutation was 1, 3 and 13% in Lambaréné, Kumasi and Kisumu, respectively. Isolates with two pfmdr1 gene copy number predominantly harboured the N86Y wild-type allele and were mostly found in Kumasi (10%) (P < 0.0001). Among the main pfmdr1 haplotypes (NFD, NYD and YFD), NYD was associated with highest parasitaemia (P = 0.04). At the pfatp6 locus, H243Y and A623E mutations were observed at very low frequency at all three sites. The prevalence of the pfatp6 E431K variant was 6, 18 and 17% in Lambaréné, Kumasi and Kisumu, respectively. The L263E and S769N mutations were absent in all isolates. The pfk13 variants associated with artemisinin resistance in Southeast Asia were not observed. Eleven novel substitutions in the pfk13 locus occurring at low frequency were observed. CONCLUSIONS: Artemisinins are still highly efficacious in large malaria-endemic regions though declining efficacy has occurred in Southeast Asia. The return of chloroquine-sensitive strains following the removal of drug pressure is observed. However, selection of wild-type alleles in the multidrug-resistance gene and the increased gene copy number is associated with reduced lumefantrine sensitivity. This study indicates a need to constantly monitor drug resistance to artemisinin in field isolates from malaria-endemic countries

    Comparison of the cumulative efficacy and safety of chloroquine, artesunate, and chloroquine-primaquine in plasmodium vivax malaria

    Get PDF
    Background: Chloroquine has been recommended for Plasmodium vivax infections for >60 years, but resistance is increasing. To guide future therapies, the cumulative benefits of using slowly eliminated (chloroquine) vs rapidly eliminated (artesunate) antimalarials, and the risks and benefits of adding radical cure (primaquine) were assessed in a 3-way randomized comparison conducted on the Thailand-Myanmar border. Methods: Patients with uncomplicated P. vivax malaria were given artesunate (2 mg/kg/day for 5 days), chloroquine (25 mg base/kg over 3 days), or chloroquine-primaquine (0.5 mg/kg/day for 14 days) and were followed for 1 year. Recurrence rates and their effects on anemia were compared. Results: Between May 2010 and October 2012, 644 patients were enrolled. Artesunate cleared parasitemia significantly faster than chloroquine. Day 28 recurrence rates were 50% with artesunate (112/224), 8% with chloroquine (18/222; P < .001), and 0.5% with chloroquine-primaquine (1/198; P < .001). Median times to first recurrence were 28 days (interquartile range [IQR], 21–42) with artesunate, 49 days (IQR, 35–74) with chloroquine, and 195 days (IQR, 82–281) with chloroquine-primaquine. Recurrence by day 28, was associated with a mean absolute reduction in hematocrit of 1% (95% confidence interval [CI], .3%–2.0%; P = .009). Primaquine radical cure reduced the total recurrences by 92.4%. One-year recurrence rates were 4.51 (95% CI, 4.19–4.85) per person-year with artesunate, 3.45 (95% CI, 3.18–3.75) with chloroquine (P = .002), and 0.26 (95% CI, .19–.36) with chloroquine-primaquine (P < .001). Conclusions: Vivax malaria relapses are predominantly delayed by chloroquine but prevented by primaquine. Clinical Trials Registration: NCT01074905

    Chloroquine versus hihydroartemisinin-piperaquine with standard high-dose Primaquine given either for 7 days or 14 days in Plasmodium vivax malaria

    Get PDF
    Background: Primaquine is necessary for the radical cure of Plasmodium vivax malaria, but the optimum duration of treatment and best partner drug are uncertain. A randomized controlled trial was performed to compare the tolerability and radical curative efficacy of 7-day versus 14-day high-dose primaquine regimens (total dose 7mg/kg) with either chloroquine or dihydroartemisinin-piperaquine.Methods: Patients with uncomplicated P. vivax malaria on the Thailand-Myanmar border were randomized to either chloroquine (25mg base/kg) or dihydroartemisinin-piperaquine (dihydroartemisinin 7mg/kg and piperaquine 55mg/kg) plus primaquine, either 0.5 mg/kg/day for 14 days or 1 mg/kg/day for 7 days. Adverse events within 42 days and 1-year recurrence rates were compared and their relationship with day 6 drug concentrations assessed.Results: Between February 2012 and July 2014, 680 patients were enrolled. P. vivax recurrences (all after day 35) occurred in 80/654 (12%) patients; there was no difference between treatments. Compared to the 7-day primaquine groups the pooled relative risk of recurrence in the 14-day groups was 1.15 (95% confidence interval 0.7 to 1.8). Hematocrit reductions were clinically insignificant except in G6PD female heterozygotes, 2 of whom had hematocrit reductions to <23% requiring blood transfusion.Conclusion: Radical cure should be deployed more widely. The radical curative efficacy in vivax malaria of 7-day high-dose primaquine is similar to the standard 14-day high-dose regimen. Chloroquine and dihydroartemisinin-piperaquine are both highly effective treatments of the blood stage infection. Quantitative point of care G6PD testing would ensure safe use of the 7-day high-dose primaquine regimen in G6PD heterozygous females

    Availability and quality of anti-malarials among private sector outlets in Myanmar in 2012: results from a large, community-based, cross-sectional survey before a large-scale intervention

    Get PDF
    BACKGROUND: Global malaria control efforts are threatened by the spread and emergence of artemisinin-resistant Plasmodium falciparum parasites. In 2012, the widespread sale of partial courses of artemisinin-based monotherapy was suspected to take place in the highly accessed, weakly regulated private sector in Myanmar, posing potentially major threats to drug resistance. This study investigated the presence of artemisinin-based monotherapies in the Myanmar private sector, particularly as partial courses of therapy, to inform the targeting of future interventions to stop artemisinin resistance. METHODS: A large cross-sectional survey comprised of a screening questionnaire was conducted across 26 townships in Myanmar between March and May, 2012. For outlets that stocked anti-malarials at the time of survey, a stock audit was conducted, and for outlets that stocked anti-malarials within 3 months of the survey, a provider survey was conducted. RESULTS: A total of 3,658 outlets were screened, 83% were retailers (pharmacies, itinerant drug vendors and general retailers) and 17% were healthcare providers (private facilities and health workers). Of the 3,658 outlets screened, 1,359 outlets (32%) stocked at least one anti-malarial at the time of study. Oral artemisinin-based monotherapy comprised of 33% of self-reported anti-malarials dispensing volumes found. The vast majority of artemisinin-based monotherapy was sold by retailers, where 63% confirmed that they sold partial courses of therapy by cutting blister packets. Very few retailers (5%) had malaria rapid diagnostic tests available, and quality-assured artemisinin-based combination therapy was virtually nonexistent among retailers. CONCLUSION: Informal private pharmacies, itinerant drug vendors and general retailers should be targeted for interventions to improve malaria treatment practices in Myanmar, particularly those that threaten the emergence and spread of artemisinin resistance

    The haematological consequences of plasmodium vivax malaria after chloroquine treatment with and without primaquine: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis

    Get PDF
    Background Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax. Methods A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model. Results In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was − 0.13 g/dL [− 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p  25% to  5 g/dL. Conclusions Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals. Trial registration This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016
    corecore