23 research outputs found

    Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors

    Get PDF
    Background: Unraveling the genetic mechanisms associated with reduced gene flow between genetically differentiated populations is key to understand speciation. Different types of structural variations (SVs) have been found as a source of genetic diversity in a wide range of species. Previous studies provided detailed knowledge on the potential evolutionary role of SVs, especially copy number variations (CNVs), between well diverged species of e.g. primates. However, our understanding of their significance during ongoing speciation processes is limited due to the lack of CNV data from closely related species. The genus Sus (pig and its close relatives) which started to diverge ~4 Mya presents an excellent model for studying the role of CNVs during ongoing speciation. Results: In this study, we identified 1408 CNV regions (CNVRs) across the genus Sus. These CNVRs encompass 624 genes and were found to evolve ~2.5 times faster than single nucleotide polymorphisms (SNPs). The majority of these copy number variable genes are olfactory receptors (ORs) known to play a prominent role in food foraging and mate recognition in Sus. Phylogenetic analyses, including novel Bayesian analysis, based on CNVRs that overlap ORs retain the well-accepted topology of the genus Sus whereas CNVRs overlapping genes other than ORs show evidence for random drift and/or admixture. Conclusion: We hypothesize that inter-specific variation in copy number of ORs provided the means for rapid adaptation to different environments during the diversification of the genus Sus in the Pliocene. Furthermore, these regions might have acted as barriers preventing massive gene flow between these species during the multiple hybridization events that took place later in the Pleistocene suggesting a possible prominent role of ORs in the ongoing Sus speciation

    Roles and Regulation of the Heat Shock Proteins of the Major Human Pathogen Helicobacter pylori

    No full text
    The ability of pathogens to gauge the surroundings and modulate gene expression accordingly is a crucial feature for bacterial survival. In this respect, the heat-shock response, a universally conserved mechanism of protection, allows bacterial cells to adapt rapidly to hostile environmental conditions and to survive during stress. The major human pathogen Helicobacter pylori employs a collection of highly conserved heat-shock proteins (HSP) to preserve cellular proteins and to maintain their homeostasis, allowing the pathogen to adapt and survive in the hostile niche of the human stomach. Moreover, various evidences suggest that some chaperones of H. pylori may play also non-canonical roles, as for example in the interaction with the extracellular environment. In H. pylori, the regulation of HSP expression is orchestrated by two dedicated transcriptional repressors, named HspR and HrcA, as well as via a chaperones-dependent posttranscriptional feedback control acting on the activity of HspR and HrcA regulators themselves. This chapter briefly reviews our understanding of the roles and regulation of the most important HSP of H. pylori, which represent a crucial virulence factor for bacterial infection and persistence in the human host

    Robustness of Helicobacter pylori infection conferred by context-variable redundancy among cysteine-rich paralogs

    Get PDF
    Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells

    Data from: Genetic mapping of two components of reproductive isolation between two sibling species of moths, Ostrinia nubilalis and O. scapulalis

    No full text
    We report the quantitative trait loci (QTL) mapping of reproductive isolation traits between Ostrinia nubilalis (the European corn borer) and its sibling species O. scapulalis (the Adzuki bean borer), focusing on two traits: mating isolation (mi) and pheromone production (Pher). Four genetic maps were generated from two backcross families, with two maps (one chromosomal map and one linkage map) per backcross. We located 165–323 AFLP markers on these four maps, resulting in the identification of 27–31 linkage groups, depending on the map considered. No-choice mating experiments with the offspring of each backcross led to the detection of at least two QTLs for mi in different linkage groups. QTLs underlying Pher were located in a third linkage group. The Z heterochromosome was identified by a specific marker (Tpi) and did not carry any of these QTLs. Finally, we considered the global divergence between the two sibling species, distortions of segregation throughout the genome, and the location and effect of mi and Pher QTLs in light of the known candidate genes for reproductive isolation within the genus Ostrinia and, more broadly, in phytophagous insects
    corecore