106 research outputs found

    Inhibition of serum cholesterol oxidation by dietary vitamin C and selenium intake in high fat fed rats

    Get PDF
    Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols

    Time to positivity in blood cultures of adults with Streptococcus pneumoniae bacteremia

    Get PDF
    BACKGROUND: previous studies have established that bacterial blood concentration is related with clinical outcome. Time to positivity of blood cultures (TTP) has relationship with bacterial blood concentration and could be related with prognosis. As there is scarce information about the usefulness of TTP, we study the relationship of TTP with clinical parameters in patients with Streptococcus pneumoniae bacteremia. METHODS: TTP of all cases of Streptococcus pneumoniae bacteremia, detected between January 1995 and December 2004 using the BacT/Alert automated blood culture system in a teaching community hospital was analyzed. When multiple cultures were positive only the shortest TTP was selected for the analysis. RESULTS: in the study period 105 patients with Streptococcus pneumoniae bacteremia were detected. Median TTP was 14.1 hours (range 1.2 h to 127 h). Immunosuppressed patients (n = 5), patients with confusion (n = 19), severe sepsis or shock at the time of blood culture extraction (n = 12), those with a diagnosis of meningitis (n = 7) and those admitted to the ICU (n = 14) had lower TTP. Patients with TTP in the first quartile were more frequently hospitalized, admitted to the ICU, had meningitis, a non-pneumonic origin of the bacteremia, and a higher number of positive blood cultures than patients with TTP in the fourth quartile. None of the patients with TTP in the 90(th )decile had any of these factors associated with shorter TTP, and eight out of ten patients with TTP in the 10(th )decile had at least one of these factors. The number of positive blood cultures had an inverse correlation with TTP, suggesting a relationship of TTP with bacterial blood concentration. CONCLUSION: Our data support the relationship of TTP with several clinical parameters in patients with Streptococcus pneumoniae bacteremia, and its potential usefulness as a surrogate marker of outcome

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF
    Correction: Volume53, Issue5 Page 762-762 DOI: 10.1038/s41588-021-00832-z Published MAY 2021Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequencyPeer reviewe

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted
    corecore