259 research outputs found

    Species competition: coexistence, exclusion and clustering

    Get PDF
    We present properties of Lotka-Volterra equations describing ecological competition among a large number of competing species. First we extend to the case of a non-homogeneous niche space stability conditions for solutions representing species coexistence. Second, we discuss mechanisms leading to species clustering and obtain an analytical solution for a lumped state in a specific instance of the system. We also discuss how realistic ecological interactions may result in different types of competition coefficients.Comment: 9 pages, 4 figures. Replaced with published version. Freely available from the publisher site under the Creative Commons Attribution licens

    Multispecies, trait and community size spectrum ecological modelling in R (mizer)

    Get PDF
    Size spectrum ecological models have emerged as a conceptually simple way to model a large community of individuals which grow and change trophic level during their lives. They are a subset of physiologically structured models where growth (and thus maturation) is food dependent, and processes are formulated in terms of individual level processes. A key feature is that of a size spectrum, where the total abundance of individuals at size scales negatively with size: there are more small things than big things. Mizer is a software package for implementing size spectrum ecological models using the R statistical programming environment. The package has been developed to model marine ecosystems that are subject to fishing.JRC.G.4-Maritime affair

    Correction of Optical Aberrations in Elliptic Neutron Guides

    Full text link
    Modern, nonlinear ballistic neutron guides are an attractive concept in neutron beam delivery and instrumentation, because they offer increased performance over straight or linearly tapered guides. However, like other ballistic geometries they have the potential to create significantly non-trivial instrumental resolution functions. We address the source of the most prominent optical aberration, namely coma, and we show that for extended sources the off-axis rays have a different focal length from on-axis rays, leading to multiple reflections in the guide system. We illustrate how the interplay between coma, sources of finite size, and mirrors with non-perfect reflectivity can therefore conspire to produce uneven distributions in the neutron beam divergence, the source of complicated resolution functions. To solve these problems, we propose a hybrid elliptic-parabolic guide geometry. Using this new kind of neutron guide shape, it is possible to condition the neutron beam and remove almost all of the aberrations, whilst providing the same performance in beam current as a standard elliptic neutron guide. We highlight the positive implications for a number of neutron scattering instrument types that this new shape can bring.Comment: Presented at NOP2010 Conference in Alpe d'Huez, France, in March 201

    最近の經濟學界

    Get PDF
    Size spectrum models have emerged from 40 years of basic research on how body size determines individual physiology and structures marine communities. They are based on commonly accepted assumptions and have a low parameter set, which make them easy to deploy for strategic ecosystem oriented impact assessment of fisheries. We describe the fundamental concepts in size-based models about food encounter and the bioenergetics budget of individuals. Within the general framework three model types have emerged that differs in their degree of complexity: the food-web, the trait-based and the community model. We demonstrate the differences between the models through examples of their response to fishing and their dynamic behavior. We review implementations of size spectrum models and describe important variations concerning the functional response, whether growth is food-dependent or fixed, and the density-dependence imposed on the system. Finally we discuss challenges and promising directions.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies

    Get PDF
    Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia, Sagittoidea, and Teleost. We find marine life following one of two distinct strategies, with offspring size being either proportional to adult size (e.g., Crustaceans, Elasmobranchii, and Mammalia) or invariant with adult size (e.g., Cephalopoda, Cnidaria, Sagittoidea, Teleosts, and possibly Ctenophora). We discuss where these two strategies occur and how these patterns (along with the relative size of the offspring) may be shaped by physical and biological constraints in the organism's environment. This adaptive environment along with the evolutionary history of the different groups shape observed life history strategies and possible group-specific responses to changing environmental conditions (e.g., production and distribution)

    Dynamical models for sand ripples beneath surface waves

    Get PDF
    We introduce order parameter models for describing the dynamics of sand ripple patterns under oscillatory flow. A crucial ingredient of these models is the mass transport between adjacent ripples, which we obtain from detailed numerical simulations for a range of ripple sizes. Using this mass transport function, our models predict the existence of a stable band of wavenumbers limited by secondary instabilities. Small ripples coarsen in our models and this process leads to a sharply selected final wavenumber, in agreement with experimental observations.Comment: 9 pages. Shortened version of previous submissio

    Demersal fish biomass declines with temperature across productive shelf seas

    Get PDF
    Aim: Theory predicts fish community biomass to decline with increasing temperature due to higher metabolic losses resulting in less efficient energy transfer in warm-water food webs. However, whether these metabolic predictions explain observed macroecological patterns in fish community biomass is virtually unknown. Here, we test these predictions by examining the variation in demersal fish biomass across productive shelf regions. Location: Twenty one continental shelf regions in the North Atlantic and Northeast Pacific. Time Period: 1980-2015. Methods: We compiled high-resolution bottom trawl survey data of fish biomass containing 166,000 unique tows and corrected biomass for differences in sampling area and trawl gear catchability. We examined whether relationships between net primary production and demersal fish community biomass are mediated by temperature, food-web structure and the level of fishing exploitation, as well as the choice of spatial scale of the analysis. Subsequently, we examined if temperature explains regional changes in fish biomass over time under recent warming. Results: We find that biomass per km2 varies 40-fold across regions and is highest in cold waters and areas with low fishing exploitation. We find no evidence that temperature change has impacted biomass within marine regions over the time period considered. The biomass variation is best explained by an elementary trophodynamic model that accounts for temperature-dependent trophic efficiency. Main Conclusions: Our study supports the hypothesis that temperature is a main driver of large-scale cross-regional variation in fish community biomass. The cross-regional pattern suggests that long-term impacts of warming will be negative on biomass. These results provide an empirical basis for predicting future changes in fish community biomass and its associated services for human wellbeing that is food provisioning, under global climate change
    corecore